Do you want to publish a course? Click here

Anisotropic Magnon Spin Transport in Ultra-thin Spinel Ferrite Thin Films -- Evidence for Anisotropy in Exchange Stiffness

109   0   0.0 ( 0 )
 Added by Tianxiang Nan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite $mathrm{MgAl_{0.5}Fe_{1.5}O_4}$ (MAFO), which has a substantial in-plane four-fold magnetic anisotropy. We observe spin diffusion lengths $> 0.8$ $mathrm{mu m}$ at room temperature in 6 nm films, with spin diffusion length 30% longer along the easy axes compared to the hard axes. The sign of this difference is opposite to the effects just of anisotropy in the magnetic energy for a uniform magnetic state. We suggest instead that accounting for anisotropy in exchange stiffness is necessary to explain these results.



rate research

Read More

Spin Seebeck effect (SSE) has been investigated in thin films of two Y-hexagonal ferrites Ba$_2$Zn$_{2}$Fe$_{12}$O$_{22}$ (Zn2Y) and Ba$_2$Co$_{2}$Fe$_{12}$O$_{22}$ (Co2Y) deposited by a spin-coating method on SrTiO$_3$(111) substrate. The selected hexagonal ferrites are both ferrimagnetic with similar magnetic moments at room temperature and both exhibit easy magnetization plane normal to $c$-axis. Despite that, SSE signal was only observed for Zn2Y, whereas no significant SSE signal was detected for Co2Y. We tentatively explain this different behavior by a presence of two different magnetic ions in Co2Y, whose random distribution over octahedral sites interferes the long range ordering and enhances the Gilbert damping constant. The temperature dependence of SSE for Zn2Y was measured and analyzed with regard to the heat flux and temperature gradient relevant to the SSE signal.
Ferromagnetic Co$_2$MnGa has recently attracted significant attention due to effects related to non-trivial topology of its band structure, however a systematic study of canonical magneto-galvanic transport effects is missing. Focusing on high quality thin films, here we systematically measure anisotropic magnetoresistance (AMR) and its thermoelectric counterpart (AMTP). We model the AMR data by free energy minimisation within the Stoner-Wohlfarth formalism and conclude that both crystalline and non-crystalline components of this magneto-transport phenomenon are present in Co$_2$MnGa. Unlike the AMR which is small in relative terms, the AMTP is large due to a change of sign of the Seebeck coefficient as a function of temperature. This fact is discussed in the context of the Mott rule and further analysis of AMTP components is presented.
Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using PLD technique. The angle dependent magnetic hysteresis, remanent coercivity and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.
We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentrations of up to 2$times10^{22}$ cm$^{-3}$ and mobilities of up to 19,000 cm$^2$/V-s at 2 K. There exists a non-conducting layer in our SrTiO$_{3-delta}$ films that is larger in films with lower carrier concentrations. This non-conducting layer can be attributed to a surface depletion layer due to a Fermi level pinning potential. The depletion width, transport, and structural properties are not greatly affected by the insertion of a DyScO$_3$ buffer between the SrTiO$_3$ film and SrTiO$_3$ substrate.
The origins of indirect spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized $textit{d}$-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a $sigmapi-d$ exchange analogous to $textit{sp-d}$ interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified $textit{g}$-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا