No Arabic abstract
NGC 1097 is a nearby SBb galaxy with a Seyfert nucleus and a bright starburst ring. We study the physical properties of the interstellar medium (ISM) in the ring using spatially resolved far-infrared spectral maps of the circumnuclear starburst ring of NGC 1097, obtained with the PACS spectrometer on board the Herschel Space Telescope. In particular, we map the important ISM cooling and diagnostic emission lines of [OI] 63 $mu$m, [OIII] 88 $mu$m, [NII] 122 $mu$m, [CII] 158 $mu$m and [NII] 205 $mu$m. We observe that in the [OI] 63 $mu$m, [OIII] 88 $mu$m, and [NII] 122 $mu$m line maps, the emission is enhanced in clumps along the NE part of the ring. We observe evidence of rapid rotation in the circumnuclear ring, with a rotation velocity of ~220$ km s$^{-1}$ (inclination uncorrected) measured in all lines. The [OI] 63 $mu$m/[CII] 158 $mu$m ratio varies smoothly throughout the central region, and is enhanced on the northeastern part of the ring, which may indicate a stronger radiation field. This enhancement coincides with peaks in the [OI] 63 $mu$m and [OIII] 88 $mu$m maps. Variations of the [NII] 122 $mu$m/[NII] 205 $mu$m ratio correspond to a range in the ionized gas density between 150 and 400 cm$^{-3}$.
We present spectroscopic observations of FIR fine-structure lines of 26 Seyfert galaxies obtained with the Herschel-PACS spectrometer. These observations are complemented by spectroscopy with Spitzer-IRS and Herschel-SPIRE. The ratios of the OIII, NII, SIII and NeV lines have been used to determine electron densities in the ionised gas regions. The CI lines, observed with SPIRE, have been used to measure the densities in the neutral gas, while the OI lines provide a measure of the gas temperature, at densities below 10000 cm-3. Using the OI145/63um and SIII33/18um line ratios we find an anti-correlation of the temperature with the gas density. Using various fine-structure line ratios, we find that density stratification is common in these active galaxies. On average, the electron densities increase with the ionisation potential of the ions producing the NII, SIII and NeV emission. The infrared emission lines arise partly in the Narrow Line Region (NLR) photoionised by the AGN central engine, partly in HII regions photo ionised by hot stars and partly in neutral gas in photo-dissociated regions (PDRs). We attempt to separate the contributions to the line emission produced in these different regions by comparing our emission line ratios to empirical and theoretical values. In particular, we tried to separate the contribution of AGN and star formation by using a combination of Spitzer and Herschel lines, and we found that, besides the well known mid-IR line ratios, the mixed mid-IR/far-IR line ratio of OIII88um/OIV26um can reliably discriminate the two emission regimes, while the far-IR line ratio of CII157um/OI63um is only able to mildly separate the two regimes. By comparing the observed CII157um/NII205um ratio with photoionisation models, we also found that most of the CII emission in the galaxies we examined is due to PDRs.
We present a coherent database of spectroscopic observations of far-IR fine-structure lines from the Herschel/PACS archive for a sample of 170 local AGN, plus a comparison sample of 20 starburst galaxies and 43 dwarf galaxies. Published Spitzer/IRS and Herschel/SPIRE line fluxes are included to extend our database to the full 10-600 $mu m$ spectral range. The observations are compared to a set of CLOUDY photoionisation models to estimate the above physical quantities through different diagnostic diagrams. We confirm the presence of a stratification of gas density in the emission regions of the galaxies, which increases with the ionisation potential of the emission lines. The new [OIV]25.9$mu m$/[OIII]88$mu m$ vs [NeIII]15.6$mu m$/[NeII]12.8$mu m$ diagram is proposed as the best diagnostic to separate: $i)$ AGN activity from any kind of star formation; and $ii)$ low-metallicity dwarf galaxies from starburst galaxies. Current stellar atmosphere models fail to reproduce the observed [OIV]25.9$mu m$/[OIII]88$mu m$ ratios, which are much higher when compared to the predicted values. Finally, the ([NeIII]15.6$mu m$ + [NeII]12.8$mu m$)/([SIV]10.5$mu m$ + [SIII]18.7$mu m$) ratio is proposed as a promising metallicity tracer to be used in obscured objects, where optical lines fail to accurately measure the metallicity. The diagnostic power of mid- to far-infrared spectroscopy shown here for local galaxies will be of crucial importance to study galaxy evolution during the dust-obscured phase at the peak of the star formation and black-hole accretion activity ($1 < z < 4$). This study will be addressed by future deep spectroscopic surveys with present and forthcoming facilities such as JWST, ALMA, and SPICA.
We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, $Sigma_{rm IR}$. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is $n_{rm e}$ = 41 cm$^{-3}$. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, $n_{rm H}$, and intensity of the interstellar radiation field, in units of G$_0$, and find G$_0$/$n_{rm H}$ ratios ~0.1-50 cm$^3$, with ULIRGs populating the upper end of the distribution. There is a relation between G$_0$/$n_{rm H}$ and $Sigma_{rm IR}$, showing a critical break at $Sigma_{rm IR}^{star}$ ~ 5 x 10$^{10}$ Lsun/kpc$^2$. Below $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ remains constant, ~0.32 cm$^3$, and variations in $Sigma_{rm IR}$ are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ increases rapidly with $Sigma_{rm IR}$, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources.
We present Herschel far-infrared (FIR) observations of two sub-mm bright quasars at high redshift: SDSS J1148+5251 (z=6.42) and BR 1202-0725 (z=4.69) obtained with the PACS instrument. Both objects are detected in the PACS photometric bands. The Herschel measurements provide additional data points that constrain the FIR spectral energy distributions (SEDs) of both sources, and they emphasise a broad range of dust temperatures in these objects. For lambda_rest ~< 20mu, the two SEDs are very similar to the average SEDs of quasars at low redshift. In the FIR, however, both quasars show excess emission compared to low-z QSO templates, most likely from cold dust powered by vigorous star formation in the QSO host galaxies. For SDSS J1148+5251 we detect another object at 160mu with a distance of ~10 arcseconds from the QSO. Although no physical connection between the quasar and this object can be shown with the available data, it could potentially confuse low-resolution measurements, thus resulting in an overestimate of the FIR luminosity of the z=6.42 quasar.
NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar and an active nucleus. We present a detailed study of the spatial variation of the far infrared (FIR) [CII]158um and [OI]63um lines and mid-infrared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS, and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158um+[OI]63um)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7um PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158{mu}m/PAH(5.5 - 14um) is found. PAHs in the ring are responsible for a factor of two more [CII]158um and [OI]63um emission per unit mass than PAHs in the Enuc S. SED modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high intensity photodissociation regions (PDRs), in which case G0 ~ 10^2.3 and nH ~ 10^3.5 cm^-3 in the ring. For these values of G0 and nH PDR models cannot reproduce the observed H2 emission. Much of the the H2 emission in the starburst ring could come from warm regions in the diffuse ISM that are heated by turbulent dissipation or shocks.