Do you want to publish a course? Click here

A Herschel/PACS Far Infrared Line Emission Survey of Local Luminous Infrared Galaxies

147   0   0.0 ( 0 )
 Added by Tanio Diaz-Santos
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, $Sigma_{rm IR}$. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is $n_{rm e}$ = 41 cm$^{-3}$. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, $n_{rm H}$, and intensity of the interstellar radiation field, in units of G$_0$, and find G$_0$/$n_{rm H}$ ratios ~0.1-50 cm$^3$, with ULIRGs populating the upper end of the distribution. There is a relation between G$_0$/$n_{rm H}$ and $Sigma_{rm IR}$, showing a critical break at $Sigma_{rm IR}^{star}$ ~ 5 x 10$^{10}$ Lsun/kpc$^2$. Below $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ remains constant, ~0.32 cm$^3$, and variations in $Sigma_{rm IR}$ are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ increases rapidly with $Sigma_{rm IR}$, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources.



rate research

Read More

We present spectroscopic observations of FIR fine-structure lines of 26 Seyfert galaxies obtained with the Herschel-PACS spectrometer. These observations are complemented by spectroscopy with Spitzer-IRS and Herschel-SPIRE. The ratios of the OIII, NII, SIII and NeV lines have been used to determine electron densities in the ionised gas regions. The CI lines, observed with SPIRE, have been used to measure the densities in the neutral gas, while the OI lines provide a measure of the gas temperature, at densities below 10000 cm-3. Using the OI145/63um and SIII33/18um line ratios we find an anti-correlation of the temperature with the gas density. Using various fine-structure line ratios, we find that density stratification is common in these active galaxies. On average, the electron densities increase with the ionisation potential of the ions producing the NII, SIII and NeV emission. The infrared emission lines arise partly in the Narrow Line Region (NLR) photoionised by the AGN central engine, partly in HII regions photo ionised by hot stars and partly in neutral gas in photo-dissociated regions (PDRs). We attempt to separate the contributions to the line emission produced in these different regions by comparing our emission line ratios to empirical and theoretical values. In particular, we tried to separate the contribution of AGN and star formation by using a combination of Spitzer and Herschel lines, and we found that, besides the well known mid-IR line ratios, the mixed mid-IR/far-IR line ratio of OIII88um/OIV26um can reliably discriminate the two emission regimes, while the far-IR line ratio of CII157um/OI63um is only able to mildly separate the two regimes. By comparing the observed CII157um/NII205um ratio with photoionisation models, we also found that most of the CII emission in the galaxies we examined is due to PDRs.
We present a coherent database of spectroscopic observations of far-IR fine-structure lines from the Herschel/PACS archive for a sample of 170 local AGN, plus a comparison sample of 20 starburst galaxies and 43 dwarf galaxies. Published Spitzer/IRS and Herschel/SPIRE line fluxes are included to extend our database to the full 10-600 $mu m$ spectral range. The observations are compared to a set of CLOUDY photoionisation models to estimate the above physical quantities through different diagnostic diagrams. We confirm the presence of a stratification of gas density in the emission regions of the galaxies, which increases with the ionisation potential of the emission lines. The new [OIV]25.9$mu m$/[OIII]88$mu m$ vs [NeIII]15.6$mu m$/[NeII]12.8$mu m$ diagram is proposed as the best diagnostic to separate: $i)$ AGN activity from any kind of star formation; and $ii)$ low-metallicity dwarf galaxies from starburst galaxies. Current stellar atmosphere models fail to reproduce the observed [OIV]25.9$mu m$/[OIII]88$mu m$ ratios, which are much higher when compared to the predicted values. Finally, the ([NeIII]15.6$mu m$ + [NeII]12.8$mu m$)/([SIV]10.5$mu m$ + [SIII]18.7$mu m$) ratio is proposed as a promising metallicity tracer to be used in obscured objects, where optical lines fail to accurately measure the metallicity. The diagnostic power of mid- to far-infrared spectroscopy shown here for local galaxies will be of crucial importance to study galaxy evolution during the dust-obscured phase at the peak of the star formation and black-hole accretion activity ($1 < z < 4$). This study will be addressed by future deep spectroscopic surveys with present and forthcoming facilities such as JWST, ALMA, and SPICA.
We present Herschel far-IR photometry and spectroscopy as well as ground based CO observations of an intermediate redshift (0.21 < z < 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L_IR > 10^11.5L_sun). With these measurements we trace the dust continuum, far-IR atomic line emission, in particular [CII],157.7microns, as well as the molecular gas of z~0.3 (U)LIRGs and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L_CII/L_FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-$z$ star forming galaxies. Using our sample to bridge local and high-z [CII] observations, we find that the majority of galaxies at all redshifts and all luminosities follow a L_CII-L_FIR relation with a slope of unity, from which local ULIRGs and high-z AGN dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L_CII/L_FIR ratio and the far-IR color L_60/L_100 observed in the local Universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L_CII/L_FIR at any epoch. Intermediate redshift ULIRGs are also characterised by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L_CII/L_FIR ratios, the moderate star formation efficiencies (L_LIR/L_CO or L_IR/M_gas) and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ~ 0.3.
We describe a Herschel Space Observatory 194-671 micron spectroscopic survey of a sample of 121 local luminous infrared galaxies and report the fluxes of the CO $J$ to $J$-1 rotational transitions for $4 leqslant J leqslant 13$, the [NII] 205 um line, the [CI] lines at 609 and 370 um, as well as additional and usually fainter lines. The CO spectral line energy distributions (SLEDs) presented here are consistent with our earlier work, which was based on a smaller sample, that calls for two distinct molecular gas components in general: (i) a cold component, which emits CO lines primarily at $J lesssim 4$ and likely represents the same gas phase traced by CO (1-0), and (ii) a warm component, which dominates over the mid-$J$ regime ($4 < J < 10$) and is intimately related to current star formation. We present evidence that the CO line emission associated with an active galactic nucleus is significant only at $J > 10$. The flux ratios of the two [CI] lines imply modest excitation temperatures of 15 to 30 K; the [CI] 370 um line scales more linearly in flux with CO (4-3) than with CO (7-6). These findings suggest that the [CI] emission is predominately associated with the gas component defined in (i) above. Our analysis of the stacked spectra in different far-infrared (FIR) color bins reveals an evolution of the SLED of the rotational transitions of water vapor as a function of the FIR color in a direction consistent with infrared photon pumping.
137 - D. Rigopoulou 2014
We report the first results from a spectroscopic survey of the [CII] 158um line from a sample of intermediate redshift (0.2<z<0.8) (ultra)-luminous infrared galaxies, (U)LIRGs (LIR>10^11.5 Lsun), using the SPIRE-Fourier Transform Spectrometer (FTS) on board the Herschel Space Observatory. This is the first survey of [CII] emission, an important tracer of star-formation, at a redshift range where the star-formation rate density of the Universe increases rapidly. We detect strong [CII] 158um line emission from over 80% of the sample. We find that the [CII] line is luminous, in the range (0.8-4)x10^(-3) of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L[CII]/LIR ratio in our intermediate redshift (U)LIRGs is on average ~10 times larger than that of local ULIRGs. Furthermore, we find that the L[CII]/LIR and L[CII]/LCO(1-0) ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z~0.5 show many similarities to the properties of local normal and high-z star forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star forming regions of luminous infrared galaxies is likely to have occurred in the last 5 billion years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا