Do you want to publish a course? Click here

A study of high-energy proton induced damage in Cerium Fluoride in comparison with measurements in Lead Tungstate calorimeter crystals

449   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A Cerium Fluoride crystal produced during early R&D studies for calorimetry at the CERN Large Hadron Collider was exposed to a 24 GeV/c proton fluence Phi_p=(2.78 +- 0.20) x 10EE13 cm-2 and, after one year of measurements tracking its recovery, to a fluence Phi_p=(2.12 +- 0.15) x 10EE14 cm-2. Results on proton-induced damage to the crystal and its spontaneous recovery after both irradiations are presented here, along with some new, complementary data on proton-damage in Lead Tungstate. A comparison with FLUKA Monte Carlo simulation results is performed and a qualitative understanding of high-energy damage mechanism is attempted.



rate research

Read More

A Lead Tungstate crystal produced for the electromagnetic calorimeter of the CMS experiment at the LHC was cut into three equal-length sections. The central one was irradiated with 290 MeV/c positive pions up to a fluence of (5.67 +- 0.46)x10^13 /cm^2, while the other two were exposed to a 24 GeV/c proton fluence of (1.17 +- 0.11) x 10^13/ cm^2. The damage recovery in these crystals, stored in the dark at room temperature, has been followed over two years. The comparison of the radiation-induced changes in light transmission for these crystals shows that damage is proportional to the star densities produced by the irradiation.
69 - V.Batarin , J.Butler , T.Chen 2003
Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a $^{137}Cs$ $gamma$-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.
Lead fluoride ($PbF_{2}$) crystals represent an excellent and relatively innovative choice for high resolution electromagnetic calorimeters with high granularity and fast timing. During the R&D stages of the Crilin calorimeter, three pbfd crystals sized $5times 5 times 40 $ mm$^3$ were irradiated with $^{60}$Co photons up to $sim 4$ Mrad and with 14 MeV neutrons up to a $10^{13}$ n/cm$^2$ total fluence. Their loss in transmittance was evaluated at different steps of the photon and neutron irradiation campaign, and two optical absorption bands associated with the formation of colour centres were observed at $sim 270$ nm and $sim 400$ nm. Natural and thermal annealing in the dark, along with optical bleaching with 400 nm light, were performed on the irradiated specimens resulting in a partial recovery of their original optical characteristics.
A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototypes energy resolution.
We report on the effects of radiation on the light output of lead tungstate crystals. The crystals were irradiated by pure, intense high energy electron and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai (China). These studies were carried out at the 70-GeV proton accelerator in Protvino.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا