Do you want to publish a course? Click here

ECG Feature Extraction Techniques - A Survey Approach

102   0   0.0 ( 0 )
 Added by Rdv Ijcsis
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

ECG Feature Extraction plays a significant role in diagnosing most of the cardiac diseases. One cardiac cycle in an ECG signal consists of the P-QRS-T waves. This feature extraction scheme determines the amplitudes and intervals in the ECG signal for subsequent analysis. The amplitudes and intervals value of P-QRS-T segment determines the functioning of heart of every human. Recently, numerous research and techniques have been developed for analyzing the ECG signal. The proposed schemes were mostly based on Fuzzy Logic Methods, Artificial Neural Networks (ANN), Genetic Algorithm (GA), Support Vector Machines (SVM), and other Signal Analysis techniques. All these techniques and algorithms have their advantages and limitations. This proposed paper discusses various techniques and transformations proposed earlier in literature for extracting feature from an ECG signal. In addition this paper also provides a comparative study of various methods proposed by researchers in extracting the feature from ECG signal.



rate research

Read More

We describe a new technique which minimizes the amount of neurons in the hidden layer of a random recurrent neural network (rRNN) for time series prediction. Merging Takens-based attractor reconstruction methods with machine learning, we identify a mechanism for feature extraction that can be leveraged to lower the network size. We obtain criteria specific to the particular prediction task and derive the scaling law of the prediction error. The consequences of our theory are demonstrated by designing a Takens-inspired hybrid processor, which extends a rRNN with a priori designed delay external memory. Our hybrid architecture is therefore designed including both, real and virtual nodes. Via this symbiosis, we show performance of the hybrid processor by stabilizing an arrhythmic neural model. Thanks to our obtained design rules, we can reduce the stabilizing neural networks size by a factor of 15 with respect to a standard system.
This paper reviews the overview of the dynamic shortest path routing problem and the various neural networks to solve it. Different shortest path optimization problems can be solved by using various neural networks algorithms. The routing in packet switched multi-hop networks can be described as a classical combinatorial optimization problem i.e. a shortest path routing problem in graphs. The survey shows that the neural networks are the best candidates for the optimization of dynamic shortest path routing problems due to their fastness in computation comparing to other softcomputing and metaheuristics algorithms
This study suggests a new approach to EEG data classification by exploring the idea of using evolutionary computation to both select useful discriminative EEG features and optimise the topology of Artificial Neural Networks. An evolutionary algorithm is applied to select the most informative features from an initial set of 2550 EEG statistical features. Optimisation of a Multilayer Perceptron (MLP) is performed with an evolutionary approach before classification to estimate the best hyperparameters of the network. Deep learning and tuning with Long Short-Term Memory (LSTM) are also explored, and Adaptive Boosting of the two types of models is tested for each problem. Three experiments are provided for comparison using different classifiers: one for attention state classification, one for emotional sentiment classification, and a third experiment in which the goal is to guess the number a subject is thinking of. The obtained results show that an Adaptive Boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and 9.94% on the attentional, emotional, and number datasets, respectively. An evolutionary-optimised MLP achieves results close to the Adaptive Boosted LSTM for the two first experiments and significantly higher for the number-guessing experiment with an Adaptive Boosted DEvo MLP reaching 31.35%, while being significantly quicker to train and classify. In particular, the accuracy of the nonboosted DEvo MLP was of 79.81%, 96.11%, and 27.07% in the same benchmarks. Two datasets for the experiments were gathered using a Muse EEG headband with four electrodes corresponding to TP9, AF7, AF8, and TP10 locations of the international EEG placement standard. The EEG MindBigData digits dataset was gathered from the TP9, FP1, FP2, and TP10 locations.
Learning classifier systems (LCSs) originated from cognitive-science research but migrated such that LCS became powerful classification techniques. Modern LCSs can be used to extract building blocks of knowledge to solve more difficult problems in the same or a related domain. Recent works on LCSs showed that the knowledge reuse through the adoption of Code Fragments, GP-like tree-based programs, into LCSs could provide advances in scaling. However, since solving hard problems often requires constructing high-level building blocks, which also results in an intractable search space, a limit of scaling will eventually be reached. Inspired by human problem-solving abilities, XCSCF* can reuse learned knowledge and learned functionality to scale to complex problems by transferring them from simpler problems using layered learning. However, this method was unrefined and suited to only the Multiplexer problem domain. In this paper, we propose improvements to XCSCF* to enable it to be robust across multiple problem domains. This is demonstrated on the benchmarks Multiplexer, Carry-one, Majority-on, and Even-parity domains. The required base axioms necessary for learning are proposed, methods for transfer learning in LCSs developed and learning recast as a decomposition into a series of subordinate problems. Results show that from a conventional tabula rasa, with only a vague notion of what subordinate problems might be relevant, it is possible to capture the general logic behind the tested domains, so the advanced system is capable of solving any individual n-bit Multiplexer, n-bit Carry-one, n-bit Majority-on, or n-bit Even-parity problem.
The theory of evolutionary computation for discrete search spaces has made significant progress in the last ten years. This survey summarizes some of the most important recent results in this research area. It discusses fine-grained models of runtime analysis of evolutionary algorithms, highlights recent theoretical insights on parameter tuning and parameter control, and summarizes the latest advances for stochastic and dynamic problems. We regard how evolutionary algorithms optimize submodular functions and we give an overview over the large body of recent results on estimation of distribution algorithms. Finally, we present the state of the art of drift analysis, one of the most powerful analysis technique developed in this field.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا