Do you want to publish a course? Click here

An upper bound on the Abbes-Saito filtration for finite flat group schemes and applications

347   0   0.0 ( 0 )
 Added by Yichao Tian
 Publication date 2010
  fields
and research's language is English
 Authors Yichao Tian




Ask ChatGPT about the research

Let $cO_K$ be a complete discrete valuation ring of residue characteristic $p>0$, and $G$ be a finite flat group scheme over $cO_K$ of order a power of $p$. We prove in this paper that the Abbes-Saito filtration of $G$ is bounded by a simple linear function of the degree of $G$. Assume $cO_K$ has generic characteristic 0 and the residue field of $cO_K$ is perfect. Fargues constructed the higher level canonical subgroups for a Barsotti-Tate group $cG$ over $cO_K$ which is not too supersingular. As an application of our bound, we prove that the canonical subgroup of $cG$ of level $ngeq 2$ constructed by Fargues appears in the Abbes-Saito filtration of the $p^n$-torsion subgroup of $cG$.



rate research

Read More

199 - Adrian Vasiu , Thomas Zink 2009
Let $p$ be a prime. Let $V$ be a discrete valuation ring of mixed characteristic $(0,p)$ and index of ramification $e$. Let $f: G rightarrow H$ be a homomorphism of finite flat commutative group schemes of $p$ power order over $V$ whose generic fiber is an isomorphism. We provide a new proof of a result of Bondarko and Liu that bounds the kernel and the cokernel of the special fiber of $f$ in terms of $e$. For $e < p-1$ this reproves a result of Raynaud. Our bounds are sharper that the ones of Liu, are almost as sharp as the ones of Bondarko, and involve a very simple and short method. As an application we obtain a new proof of an extension theorem for homomorphisms of truncated Barsotti--Tate groups which strengthens Tates extension theorem for homomorphisms of $p$-divisible groups.
Let $G$ be a finite (not necessarily abelian) group and let $p=p(G)$ be the smallest prime number dividing $|G|$. We prove that $d(G)leq frac{|G|}{p}+9p^2-10p$, where $d(G)$ denotes the small Davenport constant of $G$ which is defined as the maximal integer $ell$ such that there is a sequence over $G$ of length $ell$ contains no nonempty one-product subsequence.
A subset ${g_1, ldots , g_d}$ of a finite group $G$ invariably generates $G$ if the set ${g_1^{x_1}, ldots, g_d^{x_d}}$ generates $G$ for every choice of $x_i in G$. The Chebotarev invariant $C(G)$ of $G$ is the expected value of the random variable $n$ that is minimal subject to the requirement that $n$ randomly chosen elements of $G$ invariably generate $G$. The first author recently showed that $C(G)le betasqrt{|G|}$ for some absolute constant $beta$. In this paper we show that, when $G$ is soluble, then $beta$ is at most $5/3$. We also show that this is best possible. Furthermore, we show that, in general, for each $epsilon>0$ there exists a constant $c_{epsilon}$ such that $C(G)le (1+epsilon)sqrt{|G|}+c_{epsilon}$.
243 - Serin Hong 2016
A p-divisible group, or more generally an F-crystal, is said to be Hodge-Newton reducible if its Hodge polygon passes through a break point of its Newton polygon. Katz proved that Hodge-Newton reducible F-crystals admit a canonical filtration called the Hodge-Newton filtration. The notion of Hodge-Newton reducibility plays an important role in the deformation theory of p-divisible groups; the key property is that the Hodge-Newton filtration of a p-divisible group over a field of characteristic p can be uniquely lifted to a filtration of its deformation. We generalize Katzs result to F-crystals that arise from an unramified local Shimura datum of Hodge type. As an application, we give a generalization of Serre-Tate deformation theory for local Shimura data of Hodge type. We also apply our deformation theory to study some congruence relations on Shimura varieties of Hodge type.
115 - Zhiyou Wu 2019
We prove that there is a natural plectic weight filtration on the cohomology of Hilbert modular varieties in the spirit of Nekovar and Scholl. This is achieved with the help of Morels work on weight t-structures and a detailed study of partial Frobenius. We prove in particular that the partial Frobenius extends to toroidal and minimal compactifications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا