Do you want to publish a course? Click here

Searching for sub-stellar companion into the LkCa15 proto-planetary disk

209   0   0.0 ( 0 )
 Added by Mariangela Bonavita
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent sub-millimetric observations at the Plateau de Bure interferometer evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud. Additional Spitzer observations have corroborated this result possibly explained by the presence of a massive (>= 5 MJup) planetary mass, a brown dwarf or a low mass star companion at about 30 AU from the star. We used the most recent developments of high angular resolution and high contrast imaging to search directly for the existence of this putative companion, and to bring new constraints on its physical and orbital properties. The NACO adaptive optics instrument at VLT was used to observe LkCa15 using a four quadrant phase mask coronagraph to access small angular separations at relatively high contrast. A reference star at the same parallactic angle was carefully observed to optimize the quasi-static speckles subtraction (limiting our sensitivity at less than 1.0). Although we do not report any positive detection of a faint companion that would be responsible for the observed gap in LkCa15s disk (25-30 AU), our detection limits start constraining its probable mass, semi-major axis and eccentricity. Using evolutionary model predictions, Monte Carlo simulations exclude the presence of low eccentric companions with masses M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence. For closer orbits, brown dwarf companions can be rejected with a detection probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits do not access the star environment close enough to fully exclude the presence of a brown dwarf or a massive planet within the disk inner activity (i.e at less than 30 AU). Only, further and higher contrast observations should unveil the existence of this putative companion inside the LkCa15 disk.



rate research

Read More

Here we aim to explore the origin of the strong C2H lines to reimagine the chemistry of protoplanetary disks. There are a few key aspects that drive our analysis. First, C2H is detected in young and old systems, hinting at a long-lived chemistry. Second, as a radical, C2H is rapidly destroyed, within <1000 yr. These two statements hint that the chemistry responsible for C2H emission must be predominantly in the gas-phase and must be in equilibrium. Combining new and published chemical models we find that elevating the total volatile (gas and ice) C/O ratio is the only natural way to create a long lived, high C2H abundance. Most of the ce{C2H} resides in gas with a Fuv/n-gas ~ 10^-7 G0 cm^3. To elevate the volatile C/O ratio, additional carbon has to be released into the gas to enable an equilibrium chemistry under oxygen-poor conditions. Photo-ablation of carbon-rich grains seems the most straightforward way to elevate the C/O ratio above 1.5, powering a long-lived equilibrium cycle. The regions at which the conditions are optimal for the presence of high C/O ratio and elevated C2H abundances in the gas disk set by the Fuv/n-gas ~ 10^-7 G0 cm^3 condition lie just outside the pebble disk as well as possibly in disk gaps. This process can thus also explain the (hints of) structure seen in C2H observations.
Protoplanetary disks contain structures such as gaps, rings, and spirals, which are thought to be produced by the interaction between the disk and embedded protoplanets. However, only a few planet candidates are found orbiting within protoplanetary disks, and most of them are being challenged as having been confused with disk features. We aim to discover more proto-planetary candidates with MUSE, with a secondary aim of improving the high-resolution spectral differential imaging (HRSDI) technique by analyzing the instrumental residuals of MUSE. We analyzed MUSE observations of five young stars and applied the HRSDI technique to perform high-contrast imaging. With a 30 min integration time, MUSE can reach 5$sigma$ detection limits in apparent H$alpha$ line flux down to 10$^{-14}$ and 10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ at 0.075 and 0.25, respectively. In addition to PDS 70 b and c, we did not detect any clear accretion signatures in PDS 70, J1850-3147, and V1094 Sco down to 0.1. MUSE avoids the small sample statistics problem by measuring the noise characteristics in the spatial direction at multiple wavelengths. We detected two asymmetric atomic jets in HD 163296. The HRSDI technique when applied to MUSE data allows us to reach the photon noise limit at small separations (i.e., < 0.5). With a higher spectral resolution, MUSE can achieve fainter detection limits in apparent line flux than SPHERE/ZIMPOL by a factor of $sim$5. MUSE has some instrumental issues that limit the contrast that appear in cases with strong point sources, which can be either a spatial point source due to high Strehl observations or a spectral point source due to a high line-to-continuum ratio. We modified the HRSDI technique to better handle the instrumental artifacts and improve the detection limits.
When imaged at high-resolution, many proto-planetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the underlying gas structures are however unknown. In this paper we present a method to measure the dust-gas coupling $alpha/St$ and the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation curve from emission lines data-cubes. As a proof-of-concept, we then apply the method to two discs with prominent sub-structure, HD163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree of coupling of the dust is relatively good ($alpha/St sim 0.1$). We can therefore reject scenarios in which the disc turbulence is very low and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find high values of the $alpha$ turbulent parameter ($alpha sim 10^{-2}$). Alternatively, solutions with smaller turbulence are still compatible with our analysis if another process is limiting grain growth. For HD163296, recent measurements of the disc mass suggest that this is the case if the grain size is 1mm. Future constraints on the dust spectral indices will help to discriminate between the two alternatives.
The presence of planets or sub-stellar objects still embedded in their native protoplanetary disks is indirectly suggested by disk sub-structures like gaps, cavities, and spirals. However, these companions are rarely detected. We present VLT/NACO high-contrast images in $J$, $H$, $K_S$, and $L^{prime}$ band of the young star [BHB2007]-1 probing the inclined disk in scattered light and revealing the probable presence of a companion. The point source is detected in the $L^{prime}$ band in spatial correspondence with complementary VLA observations. This object is constrained to have a mass in the range of 37-47 M$_{Jup}$ and is located at 50 au from the central star, inside the 70 au-large disk cavity recently imaged by ALMA, that is absent from our NACO data (down to 20 au). This mass range is compatible with the upper end derived from the size of the ALMA cavity. The NIR disk brightness is highly asymmetric around the minor axis, with the southern side 5.5 times brighter than the northern side. The constant amount of asymmetry across all wavelengths suggests that it is due to a shadow cast by a misaligned inner disk. The massive companion that we detect could, in principle, explain the possible disk misalignment, as well as the different cavity sizes inferred by the NACO and ALMA observations. The confirmation and characterization of the companion is entrusted to future observations.
We have performed extensive simulations to explore the possibility of detecting eclipses and transits of close, sub-stellar and planetary companions to white dwarfs in WASP light-curves. Our simulations cover companions $sim0.3Re<{rm R}_{pl}<12Re$ and orbital periods $2{rm h}<P<15{rm d}$, equivalent to orbital radii $0.003{rm AU} < a < 0.1{rm AU}$. For Gaussian random noise WASP is sensitive to transits by companions as small as the Moon orbiting a $textrm{V}simeq$12 white dwarf. For fainter white dwarfs WASP is sensitive to increasingly larger radius bodies. However, in the presence of correlated noise structure in the light-curves the sensitivity drops, although Earth-sized companions remain detectable in principle even in low S/N data. Mars-sized, and even Mercury-sized bodies yield reasonable detection rates in high-quality light-curves with little residual noise. We searched for eclipses and transit signals in long-term light-curves of a sample of 194 white dwarfs resulting from a cross-correlation of the McCook $&$ Sion catalogue and the WASP archive. No evidence for eclipsing or transiting sub-stellar and planetary companions was found. We used this non-detection and results from our simulations to place tentative upper limits to the frequency of such objects in close orbits at white dwarfs. While only weak limits can be placed on the likely frequency of Earth-sized or smaller companions, brown dwarfs and gas giants (radius $approx Rjup$) with periods $<0.1-0.2$ days must certainly be rare ($<10%$). More stringent constraints likely requires significantly larger white dwarf samples, higher observing cadence and continuous coverage. The short duration of eclipses and transits of white dwarfs compared to the cadence of WASP observations appears to be one of the main factors limiting the detection rate in a survey optimised for planetary transits of main sequence stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا