Do you want to publish a course? Click here

Near-IR observations of the young star [BHB2007]-1: A sub-stellar companion opening the gap in the disk

90   0   0.0 ( 0 )
 Added by Alice Zurlo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The presence of planets or sub-stellar objects still embedded in their native protoplanetary disks is indirectly suggested by disk sub-structures like gaps, cavities, and spirals. However, these companions are rarely detected. We present VLT/NACO high-contrast images in $J$, $H$, $K_S$, and $L^{prime}$ band of the young star [BHB2007]-1 probing the inclined disk in scattered light and revealing the probable presence of a companion. The point source is detected in the $L^{prime}$ band in spatial correspondence with complementary VLA observations. This object is constrained to have a mass in the range of 37-47 M$_{Jup}$ and is located at 50 au from the central star, inside the 70 au-large disk cavity recently imaged by ALMA, that is absent from our NACO data (down to 20 au). This mass range is compatible with the upper end derived from the size of the ALMA cavity. The NIR disk brightness is highly asymmetric around the minor axis, with the southern side 5.5 times brighter than the northern side. The constant amount of asymmetry across all wavelengths suggests that it is due to a shadow cast by a misaligned inner disk. The massive companion that we detect could, in principle, explain the possible disk misalignment, as well as the different cavity sizes inferred by the NACO and ALMA observations. The confirmation and characterization of the companion is entrusted to future observations.



rate research

Read More

We present new, near-infrared (1.1--2.4 $mu m$) high-contrast imaging of the bright debris disk surrounding HIP 79977 with the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO) coupled with the CHARIS integral field spectrograph. SCExAO/CHARIS resolves the disk down to smaller angular separations of (0.11; $r sim 14$ au) and at a higher significance than previously achieved at the same wavelengths. The disk exhibits a marginally significant east-west brightness asymmetry in $H$ band that requires confirmation. Geometrical modeling suggests a nearly edge-on disk viewed at a position angle of $sim$ 114.6$^{o}$ east of north. The disk is best-fit by scattered-light models assuming strongly forward-scattering grains ($g$ $sim$ 0.5--0.65) confined to a torus with a peak density at $r_{0}$ $sim$ 53--75 au. We find that a shallow outer density power law of $alpha_{out}=$-1-- -3 and flare index of $beta = 1$ are preferred. Other disk parameters (e.g.~inner density power law and vertical scale height) are more poorly constrained. The disk has a slightly blue intrinsic color and its profile is broadly consistent with predictions from birth ring models applied to other debris disks. While HIP 79977s disk appears to be more strongly forward-scattering than most resolved disks surrounding 5--30 Myr-old stars, this difference may be due to observational biases favoring forward-scattering models for inclined disks vs. lower inclination, ostensibly neutral-scattering disks like HR 4796As. Deeper, higher signal-to-noise SCExAO/CHARIS data can better constrain the disks dust composition.
Recent sub-millimetric observations at the Plateau de Bure interferometer evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud. Additional Spitzer observations have corroborated this result possibly explained by the presence of a massive (>= 5 MJup) planetary mass, a brown dwarf or a low mass star companion at about 30 AU from the star. We used the most recent developments of high angular resolution and high contrast imaging to search directly for the existence of this putative companion, and to bring new constraints on its physical and orbital properties. The NACO adaptive optics instrument at VLT was used to observe LkCa15 using a four quadrant phase mask coronagraph to access small angular separations at relatively high contrast. A reference star at the same parallactic angle was carefully observed to optimize the quasi-static speckles subtraction (limiting our sensitivity at less than 1.0). Although we do not report any positive detection of a faint companion that would be responsible for the observed gap in LkCa15s disk (25-30 AU), our detection limits start constraining its probable mass, semi-major axis and eccentricity. Using evolutionary model predictions, Monte Carlo simulations exclude the presence of low eccentric companions with masses M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence. For closer orbits, brown dwarf companions can be rejected with a detection probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits do not access the star environment close enough to fully exclude the presence of a brown dwarf or a massive planet within the disk inner activity (i.e at less than 30 AU). Only, further and higher contrast observations should unveil the existence of this putative companion inside the LkCa15 disk.
We recently reported on the detection of a possible planetary-mass companion to Beta Pictoris at a projected separation of 8 AU from the star, using data taken in November 2003 with NaCo, the adaptive-optics system installed on the Very Large Telescope UT4. Eventhough no second epoch detection was available, there are strong arguments to favor a gravitationally bound companion rather than a background object. If confirmed and located at a physical separation of 8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be the closest planet to its star ever imaged, could be formed via core-accretion, and could explain the main morphological and dynamical properties of the dust disk. Our goal was to return to Beta Pic five years later to obtain a second-epoch observation of the companion or, in case of a non-detection, constrain its orbit. Deep adaptive-optics L-band direct images of Beta Pic and Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with NaCo in January and February 2009. We also use 4QPM data taken in November 2004. No point-like signal with the brightness of the companion candidate (apparent magnitudes L=11.2 or Ks ~ 12.5) is detected at projected distances down to 6.5 AU from the star in the 2009 data. As expected, the non-detection does not allow to rule out a background object; however, we show that it is consistent with the orbital motion of a bound companion that got closer to the star since first observed in 2003 and that is just emerging from behind the star at the present epoch. We place strong constraints on the possible orbits of the companion and discuss future observing prospects.
We present SCExAO/CHARIS high-contrast imaging/$JHK$ integral field spectroscopy of $kappa$ And b, a directly-imaged low-mass companion orbiting a nearby B9V star. We detect $kappa$ And b at a high signal-to-noise and extract high precision spectrophotometry using a new forward-modeling algorithm for (A-)LOCI complementary to KLIP-FM developed by Pueyo (2016). $kappa$ And bs spectrum best resembles that of a low-gravity L0--L1 dwarf (L0--L1$gamma$). Its spectrum and luminosity are very well matched by 2MASSJ0141-4633 and several other 12.5--15 $M_{rm J}$ free floating members of the 40 $Myr$-old Tuc-Hor Association, consistent with a system age derived from recent interferometric results for the primary, a companion mass at/near the deuterium-burning limit (13$^{+12}_{-2}$ M$_{rm J}$), and a companion-to-primary mass ratio characteristic of other directly-imaged planets ($q$ $sim$ 0.005$^{+0.005}_{-0.001}$). We did not unambiguously identify additional, more closely-orbiting companions brighter and more massive than $kappa$ And b down to $rho$ $sim$ 0.3 (15 au). SCExAO/CHARIS and complementary Keck/NIRC2 astrometric points reveal clockwise orbital motion. Modeling points towards a likely eccentric orbit: a subset of acceptable orbits include those that are aligned with the stars rotation axis. However, $kappa$ And bs semimajor axis is plausibly larger than 75 au and in a region where disk instability could form massive companions. Deeper $kappa$ And high-contrast imaging and low-resolution spectroscopy from extreme AO systems like SCExAO/CHARIS and higher resolution spectroscopy from Keck/OSIRIS or, later, IRIS on the Thirty Meter Telescope could help clarify $kappa$ And bs chemistry and whether its spectrum provides an insight into its formation environment.
We present and analyze a new M detection of the young exoplanet beta Pictoris b from 2008 VLT/NaCo data at a separation of ~ 4 AU and a high signal-to-noise rereduction of L data taken in December 2009. Based on our orbital analysis, the planets orbit is viewed almost perfectly edge-on (i ~ 89 degrees) and has a Saturn-like semimajor axis of 9.50 (+3.93, -1.7) AU. Intriguingly, the planets orbit is aligned with the major axis of the outer disk (Omega ~ 31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planets existence. Our results motivate new studies to clarify how $beta$ Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا