An opportunistic relay selection based on instantaneous knowledge of channels is considered to increase security against eavesdroppers. The closed-form expressions are derived for the average secrecy rates and the outage probability when the cooperative networks use Decode-and-Forward (DF) or Amplify-and-Forward (AF) strategy. These techniques are demonstrated analytically and with simulation results.
We investigate the secure communications over correlated wiretap Rayleigh fading channels assuming the full channel state information (CSI) available. Based on the information theoretic formulation, we derive closed-form expressions for the average secrecy capacity and the outage probability. Simulation results confirm our analytical expressions.
The secrecy capacity of relay channels with orthogonal components is studied in the presence of an additional passive eavesdropper node. The relay and destination receive signals from the source on two orthogonal channels such that the destination also receives transmissions from the relay on its channel. The eavesdropper can overhear either one or both of the orthogonal channels. Inner and outer bounds on the secrecy capacity are developed for both the discrete memoryless and the Gaussian channel models. For the discrete memoryless case, the secrecy capacity is shown to be achieved by a partial decode-and-forward (PDF) scheme when the eavesdropper can overhear only one of the two orthogonal channels. Two new outer bounds are presented for the Gaussian model using recent capacity results for a Gaussian multi-antenna point-to-point channel with a multi-antenna eavesdropper. The outer bounds are shown to be tight for two sub-classes of channels. The first sub-class is one in which the source and relay are clustered and the and the eavesdropper receives signals only on the channel from the source and the relay to the destination, for which the PDF strategy is optimal. The second is a sub-class in which the source does not transmit to the relay, for which a noise-forwarding strategy is optimal.
We study the outage probability of opportunistic relay selection in decode-and-forward relaying with secrecy constraints. We derive the closed-form expression for the outage probability. Based on the analytical result, the asymptotic performance is then investigated. The accuracy of our performance analysis is verified by the simulation results.
In this paper, we adopt the relay selection (RS) protocol proposed by Bletsas, Khisti, Reed and Lippman (2006) with Enhanced Dynamic Decode-and-Forward (EDDF) and network coding (NC) system in a two-hop two-way multi-relay network. All nodes are single-input single-output (SISO) and half-duplex, i.e., they cannot transmit and receive data simultaneously. The outage probability is analyzed and we show comparisons of outage probability with various scenarios under Rayleigh fading channel. Our results show that the relay selection with EDDF and network coding (RS-EDDF&NC) scheme has the best performance in the sense of outage probability upon the considered decode-and-forward (DF) relaying if there exist sufficiently relays. In addition, the performance loss is large if we select a relay at random. This shows the importance of relay selection strategies.
In this work, we present a switched relaying framework for multiple-input multiple-output (MIMO) relay systems where a source node may transmit directly to a destination node or aided by relays. We also investigate relay selection techniques for the proposed switched relaying framework, whose relays are equipped with buffers. In particular, we develop a novel relay selection protocol based on switching and the selection of the best link, denoted as Switched Max-Link. We then propose the Maximum Minimum Distance (MMD) relay selection criterion for MIMO systems, which is based on the optimal Maximum Likelihood (ML) principle and can provide significant performance gains over other criteria, along with algorithms that are incorporated into the proposed Switched Max-Link protocol. An analysis of the proposed Switched Max-Link protocol and the MMD relay selection criterion in terms of computational cost, pairwise error probability, sum-rate and average delay is carried out. Simulations show that Switched Max-Link using the MMD criterion outperforms previous works in terms of sum-rate, pairwise error probability, average delay and bit error rate.