Do you want to publish a course? Click here

A trapped-ion local field probe

158   0   0.0 ( 0 )
 Added by Gerhard Huber
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a measurement scheme that utilizes a single ion as a local field probe. The ion is confined in a segmented Paul trap and shuttled around to reach different probing sites. By the use of a single atom probe, it becomes possible characterizing fields with spatial resolution of a few nm within an extensive region of millimeters. We demonstrate the scheme by accurately investigating the electric fields providing the confinement for the ion. For this we present all theoretical and practical methods necessary to generate these potentials. We find sub-percent agreement between measured and calculated electric field values.



rate research

Read More

As one of the most striking features of quantum mechanics, quantum correlations are at the heart of quantum information science. Detection of correlations usually requires access to all the correlated subsystems. However, in many realistic scenarios this is not feasible since only some of the subsystems can be controlled and measured. Such cases can be treated as open quantum systems interacting with an inaccessible environment. Initial system-environment correlations play a fundamental role for the dynamics of open quantum systems. Following a recent proposal, we exploit the impact of the correlations on the open-system dynamics to detect system-environment quantum correlations without accessing the environment. We use two degrees of freedom of a trapped ion to model an open system and its environment. The present method does not require any assumptions about the environment, the interaction or the initial state and therefore provides a versatile tool for the study of quantum systems.
$^{133}text{Ba}^+$ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1/2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser-cool the synthetic $A$ = 133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the $6^2 text{P}_{1/2}$ $leftrightarrow$ $6^2 text{S}_{1/2}$ and $6^2 text{P}_{1/2}$ $leftrightarrow$ $5^2 text{D}_{3/2}$ electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the $6^2 text{P}_{1/2}$ $leftrightarrow$ $5^2 text{D}_{3/2}$ electronic transition isotope shift for the rare $A$ = 130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.
Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information. Here we implement a quantum API that enables a client to estimate the absolute value of the trace of a server-provided unitary $U$. We demonstrate that the algorithm functions correctly irrespective of what unitary $U$ the server implements or how the server specifically realizes $U$. Our experiment involves pioneering techniques to coherently swap qubits encoded within the motional states of a trapped Yb ion, controlled on its hyperfine state. This constitutes the first demonstration of modular computation in the quantum regime, providing a step towards scalable, parallelization of quantum computation.
We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface-electrode trap that incorporates current-carrying electrodes to generate the microwave field and the oscillating magnetic field gradient. Using this method, we perform resolved-sideband cooling of a single motional mode to its ground state.
We demonstrate a new method for the direct measurement of atomic dipole transition matrix elements based on techniques developed for quantum information purposes. The scheme consists of measuring dispersive and absorptive off-resonant light-ion interactions and is applicable to many atomic species. We determine the dipole matrix element pertaining to the Ca II H line, i.e. the 4$^2$S$_{1/2} leftrightarrow $ 4$^2$P$_{1/2}$ transition of $^{40}$Ca$^+$, for which we find the value 2.8928(43) ea$_0$. Moreover, the method allows us to deduce the lifetime of the 4$^2$P$_{1/2}$ state to be 6.904(26) ns, which is in agreement with predictions from recent theoretical calculations and resolves a longstanding discrepancy between calculated values and experimental results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا