Do you want to publish a course? Click here

Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

170   0   0.0 ( 0 )
 Added by Craig Group
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of eta-phi space; toward, away, and transverse, where phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.



rate research

Read More

The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/$c$, $pi^{-}$ beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/$c^2$ and 8.5 GeV/$c^2$. The observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of Quantum Chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. These DY results are obtained at a hard scale comparable to that of a recent COMPASS SIDIS measurement and hence allow unique tests of fundamental QCD universality predictions.
Production of a forward Drell-Yan lepton pair accompanied by a jet separated by a large rapidity interval is proposed to study the BFKL evolution at the LHC. Several observables to be measured are presented including the azimuthal angle dependence of the lepton pair which allows to determine Drell-Yan structure functions.
Data for Drell-Yan (DY) processes on nuclei are currently available from fixed target experiments up to the highest energy of $sqrt{s}=40GeV$. The bulk of the data cover the range of short coherence length, where the amplitudes of the DY reaction on different nucleons do not interfere. In this regime, DY processes provide direct information about broadening of the transverse momentum of the projectile parton experiencing initial-state multiple interactions. We revise a previous analysis of data from the E772 experiment and perform a new analysis of broadening including data from the E866 experiment at Fermilab. We conclude that the observed broadening is about twice as large as the one found previously. This helps to settle controversies that arose from a comparison of the original determination of broadening with data from other experiments and reactions.
74 - A. Courtoy 2019
During the INT-18-3 workshop, we presented an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion Transverse Momentum Distributions in view of the future Electron Ion Collider. The transverse distributions of the pion calculated in a Nambu--Jona-Lasinio framework, with Pauli-Villars regularization, were used. The pion Transverse Momentum Distributions evolved up to next-to-leading logarithmic accuracy is then tested against the transverse momentum spectrum of dilepton pairs up to a transverse momentum of 2 GeV. We found a fair agreement with available pion-nucleus data. This contribution joins common efforts from the TMD and the pion structure communities for the Electron Ion Collider.
83 - A. Courtoy 2019
We present an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion dynamics. The study consists in analyzing the effect of the partonic longitudinal and, especially, transverse distributions of the pion in a Nambu--Jona-Lasinio (NJL) framework, with Pauli-Villars regularization. In order to consistently take into account the QCD evolution effects, we have estimated the hadronic scale corresponding to the NJL models degrees of freedom through a minimization procedure at NLO: The NLO evolved pion distributions have been compared to rapidity differential Drell-Yan cross sections data. That hadronic scale so determined represents the only free parameter in our approach. The NJL transverse momentum PDF, evolved up to next-to-leading logarithmic accuracy, is then tested against the transverse momentum spectrum of dilepton pairs up to a transverse momentum of 2 GeV. We found a fair agreement with available pion-nucleus data. We find sizable evolution effects on the shape of the distributions and on the generated average transverse momentum of the dilepton pair.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا