Do you want to publish a course? Click here

Nuclear Broadening of Transverse Momentum in Drell-Yan Reactions

167   0   0.0 ( 0 )
 Added by Boris Kopeliovich
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Data for Drell-Yan (DY) processes on nuclei are currently available from fixed target experiments up to the highest energy of $sqrt{s}=40GeV$. The bulk of the data cover the range of short coherence length, where the amplitudes of the DY reaction on different nucleons do not interfere. In this regime, DY processes provide direct information about broadening of the transverse momentum of the projectile parton experiencing initial-state multiple interactions. We revise a previous analysis of data from the E772 experiment and perform a new analysis of broadening including data from the E866 experiment at Fermilab. We conclude that the observed broadening is about twice as large as the one found previously. This helps to settle controversies that arose from a comparison of the original determination of broadening with data from other experiments and reactions.



rate research

Read More

83 - A. Courtoy 2019
We present an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion dynamics. The study consists in analyzing the effect of the partonic longitudinal and, especially, transverse distributions of the pion in a Nambu--Jona-Lasinio (NJL) framework, with Pauli-Villars regularization. In order to consistently take into account the QCD evolution effects, we have estimated the hadronic scale corresponding to the NJL models degrees of freedom through a minimization procedure at NLO: The NLO evolved pion distributions have been compared to rapidity differential Drell-Yan cross sections data. That hadronic scale so determined represents the only free parameter in our approach. The NJL transverse momentum PDF, evolved up to next-to-leading logarithmic accuracy, is then tested against the transverse momentum spectrum of dilepton pairs up to a transverse momentum of 2 GeV. We found a fair agreement with available pion-nucleus data. We find sizable evolution effects on the shape of the distributions and on the generated average transverse momentum of the dilepton pair.
74 - A. Courtoy 2019
During the INT-18-3 workshop, we presented an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion Transverse Momentum Distributions in view of the future Electron Ion Collider. The transverse distributions of the pion calculated in a Nambu--Jona-Lasinio framework, with Pauli-Villars regularization, were used. The pion Transverse Momentum Distributions evolved up to next-to-leading logarithmic accuracy is then tested against the transverse momentum spectrum of dilepton pairs up to a transverse momentum of 2 GeV. We found a fair agreement with available pion-nucleus data. This contribution joins common efforts from the TMD and the pion structure communities for the Electron Ion Collider.
We present an extraction of unpolarised Transverse-Momentum-Dependent Parton Distribution Functions based on Drell-Yan production data from different experiments, including those at the LHC, and spanning a wide kinematic range. We deal with experimental uncertainties by properly taking into account correlations. We include resummation of logarithms of the transverse momentum of the vector boson up to N$^3$LL order, and we include non-perturbative contributions. These ingredients allow us to obtain a remarkable agreement with the data.
We present the extraction of unpolarized quark transverse momentum dependent parton distribution functions (TMDPDFs) and the non-perturbative part of TMD evolution kernel from the global analysis of Drell-Yan and $Z$-boson production data. The analysis is performed at the next-to-next-to-leading order (NNLO) in perturbative QCD, using the $zeta$-prescription. The estimation of the error-propagation from the experimental uncertainties to non-perturbative function is made by the replica method. The importance of the inclusion of the precise LHC data and its influence on the determination of non-perturbative functions is discussed.
We consider semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan events within transverse momentum dependent (TMD) factorization. Based on the simultaneous fit of multiple data points, we extract the unpolarized TMD distributions and the non-perturbative evolution kernel. The high quality of the fit confirms a complete universality of TMD non-perturbative distributions. The extraction is supplemented by phenomenological analyses of various parts of the TMD factorization, such as sensitivity to non-perturbative parameterizations, perturbative orders, collinear distributions, correlations between parameters, and others.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا