No Arabic abstract
In this paper non-linear dynamics of a periodically forced excitable glow discharge plasma has been studied. The experiments were performed in glow discharge plasma where excitability was achieved for suitable discharge voltage and gas pressure. The plasma was first perturbed by a sub-threshold sawtooth periodic signal, and we obtained small sub-threshold oscillations. These oscillations showed resonance when the frequency of the perturbation was around the characteristic frequency the plasma, and hence may be useful to estimate characteristic of an excitable system. On the other hand, when the perturbation was supra-threshold, system showed frequency entrainments. We obtained harmonic frequency entrainments for perturbation frequency greater than the characteristic frequency of the system and for lesser than the characteristic frequency, system showed only excitable behaviour.
We demonstrated experimentally canard induced mixed mode oscillations (MMO) in an excitable glow discharge plasma, and the results are validated through numerical solution of the FitzHugh Nagumo (FHN) model. When glow discharge plasma is perturbed by applying a magnetic field, it shows mixed mode oscillatory activity, i.e., quasiperiodic small oscillations interposed with large bounded limit cycles oscillations. The initial quasiperiodic oscillations were observed to change into large amplitude limit cycle oscillations with magnetic field, and the number of these oscillation increases with increase in the magnetic field. Fourier analysis of both numerical and experimental results show that the origin of these oscillations are canard-induced phenomena, which occurs near the threshold of the control parameter. Further, the phase space plots also confirm that the oscillations are basically canard-induced MMOs.
In order to break the limitation of plasma nitriding technology,which can be applied to a few nonmetallic gaseous elements, the Double Glow Discharge Phenomenon was found and then invented the Double Glow Plasma Surface Metallurgy Technology. This double glow plasma surface metallurgy technology can use any element in the periodic table of chemical elements for surface alloying of metal materials. Countless surface alloys with special physical and chemical properties have been produced on the surfaces of conductive materials.By using double glow discharge phenomenon,a series of new plasma technologies,such as the double glow plasma graphene technology, double glow plasma brazing technology,double glow plasma sintering technology, double glow plasma nanotechnology,double glow plasma cleaning technology, double glow plasma carburizing without hydrogen and so on, have been invented.A very simple phenomenon of double glow discharge can generate about 10 plasma innovation technologies, which fully shows that there is still a lot of innovation space on the basis of classical physics.This paper briefly introduces the basic principles,functions and characteristics of each technology. The application prospects and development directions of plasma in metal materials and machinery manufacturing industry will also be discussed.
Plasma Surface Metallurgy/Alloying is a kind of surface metallurgy/alloying to employ low temperature plasma produced by glow discharge to diffuse alloying elements into the surface of substrate material to form an alloy layer. The first plasma surface metallurgy technology is plasma nitriding invented by German scientist Dr. Bernard Berghuas in 1930. He was the first person to apply glow discharge to realize the surface alloying. In order to break the limitation of plasma nitriding technology, which can only be applied to a few non-metallic gaseous elements such as nitrogen, carbon, sulfur, the Double Glow Discharge Phenomenonwas found in 1978. Based on this phenomenon the Double Glow Plasma Surface Metallurgy Technology, also known as the Xu-Tec Process was invented in 1980. It can utilize any chemical elements in the periodic table including solid metallic, gas non-metallic elements and their combination to realize plasma surface alloying, hence greatly expanded the field of surface alloying. Countless surface alloys with high hardness, wear resistance and corrosion resistance, such as high speed steels, nickel base alloys and burn resistant alloys have been produced on the surfaces of a variety of materials. This technology may greatly improve the surface properties of metal materials, comprehensively improve the quality of mechanical products, save a lot of precious alloy elements for human beings. Based on the plasma nitriding technology, the Xu-Tec Process has opened up a new material engineering field of Plasma Surface Metallurgy. This Review Article briefly presents the history of glow discharge and surface alloying, double glow discharge phenomenon, basic principle and current status of Double Glow Plasma Surface Metallurgy/Alloying. Industrial applications, advantages and future potential of the Xu-Tec process are also presented.
In this paper, we show that the dynamics of a wide variety of nonlinear systems such as engineering, physical, chemical, biological, and ecological systems, can be simulated or modeled by the dynamics of memristor circuits. It has the advantage that we can apply nonlinear circuit theory to analyze the dynamics of memristor circuits. Applying an external source to these memristor circuits, they exhibit complex behavior, such as chaos and non-periodic oscillation. If the memristor circuits have an integral invariant, they can exhibit quasi-periodic or non-periodic behavior by the sinusoidal forcing. Their behavior greatly depends on the initial conditions, the parameters, and the maximum step size of the numerical integration. Furthermore, an overflow is likely to occur due to the numerical instability in long-time simulations. In order to generate a non-periodic oscillation, we have to choose the initial conditions, the parameters, and the maximum step size, carefully. We also show that we can reconstruct chaotic attractors by using the terminal voltage and current of the memristor. Furthermore, in many memristor circuits, the active memristor switches between passive and active modes of operation, depending on its terminal voltage. We can measure its complexity order by defining the binary coding for the operation modes. By using this coding, we show that in the forced memristor Toda lattice equations, the memristors operation modes exhibit the higher complexity. Furthermore, in the memristor Chua circuit, the memristor has the special operation modes.
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.