Do you want to publish a course? Click here

Discovery of a superluminal Fe K echo at the Galactic Center: The glorious past of Sgr A* preserved by molecular clouds

136   0   0.0 ( 0 )
 Added by Gabriele Ponti
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the result of a study of the X-ray emission from the Galactic Centre (GC) Molecular Clouds (MC) within 15 arcmin from Sgr A*. We use XMM-Newton data (about 1.2 Ms of observation time) spanning about 8 years. The MC spectra show all the features characteristic of reflection: i) intense Fe Kalpha, with EW of about 0.7-1 keV, and the associated Kbeta line; ii) flat power law continuum and iii) a significant Fe K edge (tau~0.1-0.3). The diffuse low ionisation Fe K emission follows the MC distribution, nevertheless not all MC are Fe K emitters. The long baseline monitoring allows the characterisation of the temporal evolution of the MC emission. A complex pattern of variations is shown by the different MC, with some having constant Fe K emission, some increasing and some decreasing. In particular, we observe an apparent super-luminal motion of a light front illuminating a Molecular nebula. This might be due to a source outside the MC (such as Sgr A* or a bright and long outburst of a X-ray binary), while it cannot be due to low energy cosmic rays or a source located inside the cloud. We also observe a decrease of the X-ray emission from G0.11-0.11, behaviour similar to the one of Sgr B2. The line intensities, clouds dimensions, columns densities and positions with respect to Sgr A*, are consistent with being produced by the same Sgr A* flare. The required high luminosity (about 1.5~10^39 erg/s) can hardly be produced by a binary system, while it is in agreement with a flare of Sgr A* fading about 100 years ago. The low intensity of the Fe K emission coming from the 50 and the 20 km/s MC places an upper limit of 10^36 erg/s to the mean luminosity of Sgr A* in the last 60-90 years. The Fe K emission and variations from these MC might have been produced by a single flare of Sgr A*.



rate research

Read More

We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter GC South) has an angular size of ~42 x 16 centered at (l, b) ~ (0.0, -1.4), and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at ~2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density x elapsed time) of 5.3 x 10^11 s cm^-3. The absorption column density of GC South is consistent with that toward the GC region. Thus GC South is likely to be located in the GC region (~8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be 97 pc x 37 pc, 0.16 cm^-3, and 1.6 x 10^51 erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic Center.
The possible impact Sgr A East is having on the Galactic center has fueled speculation concerning its age and the energetics of the supernova explosion that produced it. We have carried out the first in-depth analysis of the remnants evolution and its various interactions: with the stellar winds flowing out from the inner ~2 pc, with the supermassive black hole, Sgr A*, and with the 50 km/s molecular cloud behind and to the East of the nucleus. We have found that a rather standard supernova explosion with energy ~1.5e51 ergs is sufficient to create the remnant we see today, and that the latter is probably only ~1,700 years old. The X-ray Ridge between ~9 and 15 to the NE of Sgr A* appears to be the product of the current interaction between the remaining supernova ejecta and the outflowing winds. Perhaps surprisingly, we have also found that the passage of the remnant across the black hole would have enhanced the accretion rate onto the central object by less than a factor 2. Such a small increase cannot explain the current Fe fluorescence observed from the molecular cloud Sgr B2; this fluorescence would have required an increase in Sgr A*s luminosity by 6 orders of magnitude several hundred years ago. Instead, we have uncovered what appears to be a more plausible scenario for this transient irradiation--the interaction between the expanding remnant and the 50 km/s molecular cloud. The first impact would have occurred about 1,200 years after the explosion, producing a 2-200 keV luminosity of ~1e39 ergs/s. During the intervening 300-400 years, the dissipation of kinetic energy subsided considerably, leading to the much lower luminosity (~1e36 ergs/s at 2-10 keV) we see today.
132 - Gabriele Ponti 2010
We present the result of a study of the X-ray emission from the Galactic Centre Molecular Clouds (MC), within 15 arcmin from Sgr A*. We use XMM-Newton data spanning about 8 years. We observe an apparent super-luminal motion of a light front illuminating a MC. This might be due to a source outside the MC (such as Sgr A* or a bright and long outburst of a X-ray binary), while it can not be due to low energy cosmic rays or a source located inside the cloud. We also observe a decrease of the X-ray emission from G0.11-0.11, behaviour similar to the one of Sgr B2. The line intensities, clouds dimensions, columns densities and positions with respect to Sgr A*, are consistent with being produced by the same Sgr A* flare. The required high luminosity (about 1.5 10^39 erg s-1) can hardly be produced by a binary system, while it is in agreement with a flare of Sgr A* fading about 100 years ago.
We have discovered two molecular features at radial velocities of -35 km/s and 0 km/s toward the infrared Double Helix Nebula (DHN) in the Galactic center with NANTEN2. The two features show good spatial correspondence with the DHN. We have also found two elongated molecular ridges at these two velocities distributed vertically to the Galactic plane over 0.8 degree. The two ridges are linked by broad features in velocity and are likely connected physically with each other. The ratio between the 12CO J=2-1 and J=1-0 transitions is 0.8 in the ridges which is larger than the average value 0.5 in the foreground gas, suggesting the two ridges are in the Galactic center. An examination of the K band extinction reveals a good coincidence with the CO 0 km/s ridge and is consistent with a distance of 8 +/-2 kpc. We discuss the possibility that the DHN was created by a magnetic phenomenon incorporating torsional Alfven waves launched from the circumnuclear disk (Morris, Uchida & Do 2006) and present a first estimate of the mass and energy involved in the DHN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا