Do you want to publish a course? Click here

Vortex lattice disorder in YBCO probed using Beta-NMR

114   0   0.0 ( 0 )
 Added by Hassan Saadaoui
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Beta-NMR has been used to study vortex lattice disorder near the surface of the high-Tc superconductor YBCO. The magnetic field distribution from the vortex lattice was detected by implanting a low energy beam of highly polarized 8Li into a thin overlayer of silver on optimally doped, twinned and detwinned YBCO samples. The resonance in Ag broadens significantly below the transition temperature Tc as expected from the emerging field lines of the vortex lattice in YBCO. However, the lineshape is more symmetric and the dependence on the applied magnetic field is much weaker than expected from an ideal vortex lattice, indicating that the vortex density varies across the face of the sample, likely due to pinning at twin boundaries. At low temperatures the broadening from such disorder does not scale with the superfluid density.



rate research

Read More

By using Nuclear Magnetic Resonance and ac-susceptibility, the characteristic correlation times for the vortex dynamics, in an iron-based superconductor, have been derived. Upon cooling, the vortex dynamics displays a crossover consistent with a vortex glass transition. The correlation times, in the fast motions regime, merge onto a universal curve which is fit by the Vogel-Fulcher law, rather than by an Arrhenius law. Moreover, the pinning barrier shows a weak dependence on the magnetic field which can be heuristically justified within a fragile glass scenario. In addition, the glass freezing temperatures obtained by the two techniques merge onto the de Almeida-Thouless line. Finally the phase diagram for the mixed phase has been derived.
The anisotropy of the nuclear spin-lattice relaxation rate $1/T_{1}$ of $^{75}$As was investigated in the iron-based superconductor LaFeAs(O$_{1-x}$F$_{x}$) ($x = 0.07, 0.11$ and 0.14) as well as LaFeAsO. While the temperature dependence of the normal-state $1/T_1T$ in the superconducting (SC) $x = 0.07$ is different from that in the SC $x = 0.11$, their anisotropy of $1/T_1$, $R equiv (1/T_{1})_{H parallel ab}/(1/T_{1})_{H parallel c}$ in the normal state is almost the same ($simeq$ 1.5). The observed anisotropy is ascribable to the presence of the local stripe correlations with $Q = (pi, 0)$ or $(0, pi)$. In contrast, $1/T_1$ is isotropic and $R$ is approximately 1 in the overdoped $x = 0.14$ sample, where superconductivity is almost suppressed. These results suggest that the presence of the local stripe correlations originating from the nesting between hole and electron Fermi surfaces is linked to high-$T_c$ superconductivity in iron pnictides.
Weak spontaneous magnetic fields are observed near the surface of YBCO films using Beta-detected Nuclear Magnetic Resonance. Below Tc, the magnetic field distribution in a silver film evaporated onto the superconductor shows additional line broadening, indicating the appearance of small disordered magnetic fields. The line broadening increases linearly with a weak external magnetic field applied parallel to the surface, and is depth-independent up to 45 nm from the Ag/YBCO interface. The magnitude of the line broadening at 10 K extrapolated to zero applied field is less than 0.2 G, and is close to nuclear dipolar broadening in the Ag. This indicates that any fields due to broken time-reversal symmetry are less than 0.2 G.
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spectra with local density approximation (LDA) calculations. For all three nuclei in the x = 0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response.
We calculate the density of states of an inhomogeneous superconductor in a magnetic field where the positions of vortices are distributed completely at random. We consider both the cases of s-wave and d-wave pairing. For both pairing symmetries either the presence of disorder or increasing the density of vortices enhances the low energy density of states. In the s-wave case the gap is filled and the density of states is a power law at low energies. In the d-wave case the density of states is finite at zero energy and it rises linearly at very low energies in the Dirac isotropic case (alpha_D=t/Delta_0=1, where t is the hopping integral and Delta_0 is the amplitude of the order parameter). For slightly higher energies the density of states crosses over to a quadratic behavior. As the Dirac anisotropy increases (as Delta_0 decreases with respect to the hopping term) the linear region decreases in width. Neglecting this small region the density of states interpolates between quadratic and back to linear as alpha_D increases. The low energy states are strongly peaked near the vortex cores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا