No Arabic abstract
We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.
Topological charge changing transitions can induce chirality in the quark-gluon plasma by the axial anomaly. We study the equilibrium response of the quark-gluon plasma in such a situation to an external magnetic field. To mimic the effect of the topological charge changing transitions we will introduce a chiral chemical potential. We will show that an electromagnetic current is generated along the magnetic field. This is the Chiral Magnetic Effect. We compute the magnitude of this current as a function of magnetic field, chirality, temperature, and baryon chemical potential.
Within the three-flavor PNJL and EPNJL chiral quark models we have obtained pseudoscalar meson properties in quark matter at finite temperature $T$ and baryochemical potential $mu_B$. We compare the meson pole (Breit-Wigner) approximation with the Beth-Uhlenbeck (BU) approach that takes into account the continuum of quark-antiquark scattering states when determining the partial densities of pions and kaons. We evaluate the kaon-to-pion ratios along the (pseudo-)critical line in the $T-mu_B$ plane as a proxy for the chemical freezeout line, whereby the variable $x=T/mu_B$ is introduced that corresponds to the conserved entropy per baryon as initial condition for the heavy-ion collision experiments. We present a comparison with the experimental pattern of kaon-to-pion ratios within the BU approach and using $x$-dependent pion and strange quark potentials. A sharp horn effect in the energy dependence $K^+/pi^+$ ratio is explained by the enhanced pion production at energies above $sqrt{s_{NN}}=8$ GeV, when the system enters the regime of meson dominance. This effect is in line with the enhancement of low-momentum pion spectra that is discussed as a precursor of the pion Bose condensation and entails the occurrence of a nonequilibrium pion chemical potential of the order of the pion mass. We elucidate that the horn effect is not related to the existence of a critical endpoint in the QCD phase diagram.
We study the chiral magnetic effect (CME) in the hadronic phase. The CME current involves pseudoscalar mesons to modify its functional form. This conclusion is independent of microscopic details. The strength of the CME current in the hadronic phase would decrease for two flavors.
Chiral magnetic effect (CME) has been suggested to take place during peripheral relativistic heavy ion collisions. However, signals of its realization are not yet independent of ambiguities and thus probing the non-trivial topological vacua of quantum chromodynamics (QCD) is still an open issue. Weyl materials, particularly graphene, on the other hand, are effectively described at low energies by the degrees of freedom of quantum electrodynamics in two spatial dimensions, QED3. This theory shares with QCD some interesting features, like confinement and chiral symmetry breaking and also possesses a non-trivial vacuum structure. In this regard, an analog of the CME is proposed to take place in graphene under the influence of an in-plane magnetic field in which the pseudo-spin or flavor label of charge carriers is participant of the effect, rather than the actual spin. In this contribution, we review the parallelisms and differences between the CME and the so-called pseudo chiral magnetic effect, PCME.
We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.