No Arabic abstract
We discuss a string model where a conformal four-dimensional N=2 gauge theory receives corrections to its gauge kinetic functions from stringy instantons. These contributions are explicitly evaluated by exploiting the localization properties of the integral over the stringy instanton moduli space. The model we consider corresponds to a setup with D7/D3-branes in type I theory compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic dual. In the heteoric side the corrections to the quadratic gauge couplings are provided by a 1-loop threshold computation and, under the duality map, match precisely the first few stringy instanton effects in the type I setup. This agreement represents a very non-trivial test of our approach to the exotic instanton calculus.
We give a direct microscopic derivation of the F-theory background that corresponds to four D7 branes of type I theory by taking into account the D-instanton contributions to the emission of the axio-dilaton field in the directions transverse to the D7s. The couplings of the axio-dilaton to the D-instanton moduli modify its classical source terms which are shown to be proportional to the elements of the D7 brane chiral ring. Solving the bulk field equations with the non-perturbatively corrected sources yields the full F-theory background. This solution represents the gravitational dual of the four-dimensional theory living on a probe D3 brane of type I, namely of the N=2, Sp(1) SYM theory with Nf=4. Our results provide an explicit microscopic derivation of the non-perturbative gravitational dual of this theory. They also explain the recent observation that the exact coupling for this theory can be entirely reconstructed from its perturbative part plus the knowledge of the chiral ring on the D7 branes supporting its flavor degrees of freedom.
Concerning the gravitational corrections to the running of gauge couplings two different results were reported. Some authors claim that gravitational correction at the one-loop level indicates an interesting effect of universal gravitational decreasing of gauge couplings, that is, gravitational correction works universally in the direction of asymptotic freedom no matter how the gauge coupling behaves without gravity, while others reject the presence of gravitational correction at the one-loop level at all. Being these calculations done in the framework of an effective field theory approach to general relativity, we wanted to draw attention to a recently discovered profound quantum-gravitational effect of space-time dimension running that inevitably affects the running of gauge couplings. The running of space-time dimension indicating gradual reduction of dimension as one gets into smaller scales acts on the coupling constants in the direction of asymptotic freedom and therefore in any case manifests the plausibility of this quantum-gravitational effect. Curiously enough, the results are also in perfect quantitative agreement with those of Robinson and Wilczek.
We present the calculation of the leading instanton contribution to the scaling dimensions of twist-two operators with arbitrary spin and to their structure constants in the OPE of two half-BPS operators in $mathcal N=4$ SYM. For spin-two operators we verify that, in agreement with $mathcal N=4$ superconformal Ward identities, the obtained expressions coincide with those for the Konishi operator. For operators with high spin we find that the leading instanton correction vanishes. This arises as the result of a rather involved calculation and requires a better understanding.
We revisit the calculation of instanton effects in correlation functions in ${cal N}=4$ SYM involving the Konishi operator and operators of twist two. Previous studies revealed that the scaling dimensions and the OPE coefficients of these operators do not receive instanton corrections in the semiclassical approximation. We go beyond this approximation and demonstrate that, while operators belonging to the same ${cal N}=4$ supermultiplet ought to have the same conformal data, the evaluation of quantum instanton corrections for one operator can be mapped into a semiclassical computation for another operator in the same supermultiplet. This observation allows us to compute explicitly the leading instanton correction to the scaling dimension of operators in the Konishi supermultiplet as well as to their structure constants in the OPE of two half-BPS scalar operators. We then use these results, together with crossing symmetry, to determine instanton corrections to scaling dimensions of twist-four operators with large spin.
We compute instantonic effects in globally consistent T^6/Z2xZ2 orientifold models with discrete torsion and magnetised D-branes. We consider fractional branes and instantons wrapping the same rigid cycles. We clarify and analyse in detail the low-energy effective action on D-branes in these models. We provide explicit examples where instantons induce linear terms in the charged fields, or non-perturbative mass terms are generated. We also find examples where the gauge theory on fractional branes has conformal symmetry at one-loop, broken by instantonic mass terms at a hierarchically small energy scale.