Do you want to publish a course? Click here

Collective Dynamics of Bose--Einstein Condensates in Optical Cavities

329   0   0.0 ( 0 )
 Added by M. J. Bhaseen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments on Bose--Einstein condensates in optical cavities have reported a quantum phase transition to a coherent state of the matter-light system -- superradiance. The time dependent nature of these experiments demands consideration of collective dynamics. Here we establish a rich phase diagram, accessible by quench experiments, with distinct regimes of dynamics separated by non-equilibrium phase transitions. We include the key effects of cavity leakage and the back-reaction of the cavity field on the condensate. Proximity to some of these phase boundaries results in critical slowing down of the decay of many-body oscillations. Notably, this slow decay can be assisted by large cavity losses. Predictions include the frequency of collective oscillations, a variety of multi-phase co-existence regions, and persistent optomechanical oscillations described by a damped driven pendulum. These findings open new directions to study collective dynamics and non-equilibrium phase transitions in matter-light systems.



rate research

Read More

158 - S. Choi , B. Sundaram 2009
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven optical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling, which occurs in bursts. While the escape time scales exponentially with small interactions, the maximization time of the von Neumann entanglement entropy between the remaining quasibound and escaped atoms scales quadratically. Stronger interactions require higher order corrections. Entanglement entropy is maximized when about half the atoms have escaped.
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects in these lattices and examine the resulting dynamics. Even though we describe our system using the mean-field Gross--Pitaevskii theory, the full range of many particle effects among the vortices can be studied. In particular we find the existence of localized vacancies that are quasi-stable over long periods of time, and characterize the effects on the background lattice through use of the orientational correlation function, and Delaunay triangulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا