Do you want to publish a course? Click here

Kilohertz-driven Bose-Einstein condensates in optical lattices

151   0   0.0 ( 0 )
 Added by Donatella Ciampini
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven optical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.



rate research

Read More

We investigate a Bose Einstein condensate held in a 1D optical lattice whose phase undergoes a fast oscillation using a statistical analysis. The averaged potential experienced by the atoms boils down to a periodic potential having the same spatial period but with a renormalized depth. However, the atomic dynamics also contains a emph{micromotion} whose main features are revealed by a Kolmorogov-Smirnov analysis of the experimental momentum distributions. We furthermore discuss the impact of the micromotion on a quench process corresponding to a proper sudden change of the driving amplitude which reverses the curvature of the averaged potential.
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects in these lattices and examine the resulting dynamics. Even though we describe our system using the mean-field Gross--Pitaevskii theory, the full range of many particle effects among the vortices can be studied. In particular we find the existence of localized vacancies that are quasi-stable over long periods of time, and characterize the effects on the background lattice through use of the orientational correlation function, and Delaunay triangulation.
In this paper, we show that for sufficiently strong atomic interactions, there exist analytical solutions of current-carrying nonlinear Bloch states at the Brillouin zone edge to the model of spin-orbit-coupled Bose-Einstein condensates (BECs) with symmetric spin interaction loaded into optical lattices. These simple but generic exact solutions provide an analytical demonstration of some intriguing properties which have neither an analog in the regular BEC lattice systems nor in the uniform spin-orbit-coupled BEC systems. It is an analytical example for understanding the superfluid and other related properties of the spin-orbit-coupled BEC lattice systems.
Binary mixtures of Bose-Einstein condensates trapped in deep optical lattices and subjected to equal contributions of Rashba and Dresselhaus spin-orbit coupling (SOC), are investigated in the presence of a periodic time modulation of the Zeeman field. SOC tunability is explicitly demonstrated by adopting a mean-field tight-binding model for the BEC mixture and by performing an averaging approach in the strong modulation limit. In this case, the system can be reduced to an unmodulated vector discrete nonlinear Schrodinger equation with a rescaled SOC tunning parameter $alpha$, which depends only on the ratio between amplitude and frequency of the applied Zeeman field. The dependence of the spectrum of the linear system on $alpha$ has been analytically characterized. In particular, we show that extremal curves (ground and highest excited states) of the linear spectrum are continuous piecewise functions (together with their derivatives) of $alpha$, which consist of a finite number of decreasing band lobes joined by constant lines. This structure also remains in presence of not too large nonlinearities. Most important, the interactions introduce a number of localized states in the band-gaps that undergo change of properties as they collide with band lobes. The stability of ground states in the presence of the modulating field has been demonstrated by real time evolutions of the original (un-averaged) system. Localization properties of the ground state induced by the SOC tuning, and a parameter design for possible experimental observation have also been discussed.
101 - Andrea Sacchetti 2016
We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations depends, in principle, on the initial shape of the BEC wavepacket. Here, by making use of the nearest-neighbor model for the numerical analysis of the BEC wavefunction, we show that in real experiments the period of the Bloch oscillations does not really depend on the shape of the initial wavepacket and that the relative uncertainty, due to the fact that the initial shape of the wavepacket may be asymmetrical, is smaller than the one due to experimental errors. Furthermore, we also show that the relation between the oscillation period and the scattering length of the BECs atoms is linear; this fact suggest us a new experimental procedure for the measurement of the scattering length of atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا