Do you want to publish a course? Click here

Holographic phase transition in a non-critical holographic model

217   0   0.0 ( 0 )
 Added by Wei-shui Xu
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We consider a holographic model constructed from the intersecting brane configuration D4-$bar{rm{D4}}$/D4 in noncritical string theory. We study the chiral phase diagram of this holographic QCD-like model with a finite baryon chemical potential through the supergravity dual approximation.



rate research

Read More

We investigate first order phase transitions in a holographic setting of five-dimensional Einstein gravity coupled to a scalar field, constructing phase diagrams of the dual field theory at finite temperature. We scan over the two-dimensional parameter space of a simple bottom-up model and map out important quantities for the phase transition: the region where first order phase transitions take place; the latent heat, the transition strength parameter $alpha$, and the stiffness. We find that $alpha$ is generically in the range 0.1 to 0.3, and is strongly correlated with the stiffness (the square of the sound speed in a barotropic fluid). Using the LISA Cosmology Working Group gravitational wave power spectrum model corrected for kinetic energy suppression at large $alpha$ and non-conformal stiffness, we outline the observational prospects at the future space-based detectors LISA and TianQin. A TeV-scale hidden sector with a phase transition described by the model could be observable at both detectors.
We present a five-dimensional anisotropic holographic model for light quarks supported by Einstein-dilaton-two-Maxwell action. This model generalizing isotropic holographic model with light quarks is characterized by a Van der Waals-like phase transition between small and large black holes. We compare the location of the phase transition for Wilson loops with the positions of the phase transition related to the background instability and describe the QCD phase diagram in the thermodynamic plane -- temperature $T$ and chemical potential $mu$. The Cornell potential behavior in this anisotropic model is also studied. The asymptotics of the Cornell potential at large distances strongly depend on the parameter of anisotropy and orientation. There is also a nontrivial dependence of the Cornell potential on the boundary conditions of the dilaton field and parameter of anisotropy. With the help of the boundary conditions for the dilaton field one fits the results of the lattice calculations for the string tension as a function of temperature in isotropic case and then generalize to the anisotropic one.
257 - Nan Bai , Yi-Hong Gao , Guan-Bu Qi 2012
We studied holographic insulator/superconductor phase transition in the framework of Born-Infeld electrodynamics both numerically and analytically. First we numerically study the effects of the Born-Infeld electrodynamics on the phase transition, find that the critical chemical potential is not changed by the Born-Infeld parameter. Then we employ the variational method for the Sturm-Liouville eigenvalue problem to analytically study the phase transition. The analytical results obtained are found to be consistent with the numerical results.
In the previous paper [arXiv:0911.0679], we showed that the Reissner-Nordstrom black hole in the 5-dimensional anti-de Sitter space coupled to the Maxwell theory with the Chern-Simons term is unstable when the Chern-Simons coupling is sufficiently large. In the dual conformal field theory, the instability suggests a spatially modulated phase transition. In this paper, we construct and analyze non-linear solutions which describe the end-point of this phase transition. In the limit where the Chern-Simons coupling is large, we find that the phase transition is of the second order with the mean field critical exponent. However, the dispersion relation with the Van Hove singularity enhances quantum corrections in the bulk, and we argue that this changes the order of the phase transition from the second to the first. We compute linear response functions in the non-linear solution and find an infinite off-diagonal DC conductivity in the new phase.
We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent $ u$, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to $ u = 1$ and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram. We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points $(mu_{vartheta,b}, T_{vartheta,b})$ depending on the orientation $vartheta$ of quark-antiquark pairs in respect to the heavy ions collision line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا