We studied holographic insulator/superconductor phase transition in the framework of Born-Infeld electrodynamics both numerically and analytically. First we numerically study the effects of the Born-Infeld electrodynamics on the phase transition, find that the critical chemical potential is not changed by the Born-Infeld parameter. Then we employ the variational method for the Sturm-Liouville eigenvalue problem to analytically study the phase transition. The analytical results obtained are found to be consistent with the numerical results.
We study the effects of the Born-Infeld electrodynamics on the holographic superconductors in the background of a Schwarzschild AdS black hole spacetime. We find that the presence of Born-Infeld scale parameter decreases the critical temperature and the ratio of the gap frequency in conductivity to the critical temperature for the condensates. Our results means that it is harder for the scalar condensation to form in the Born-Infeld electrodynamics.
We numerically investigate the evolution of the holographic subregion complexity during a quench process in Einstein-Born-Infeld theory. Based on the subregion CV conjecture, we argue that the subregion complexity can be treated as a probe to explore the interior of the black hole. The effects of the nonlinear parameter and the charge on the evolution of the holographic subregion complexity are also investigated. When the charge is sufficiently large, it not only changes the evolution pattern of the subregion complexity, but also washes out the second stage featured by linear growth.
The requirement of the existence of a holographic c-function for higher derivative theories is a very restrictive one and hence most theories do not possess this property. Here, we show that, when some of the parameters are fixed, the $Dgeq3$ Born-Infeld gravity theories admit a holographic c-function. We work out the details of the $D=3$ theory with no free parameters, which is a non-minimal Born-Infeld type extension of new massive gravity. Moreover, we show that these theories generate an infinite number of higher derivative models admitting a c-function in a suitable expansion and therefore they can be studied at any truncated order.
We obtain (2+1) dimensional p-wave holographic superconductors from charged Born-Infeld black holes in the presence of massive charged vector fields in a bulk $AdS_4$ Einstein-Born-Infeld theory through the $AdS_4$-$CFT_3$ correspondence. Below a certain critical transition temperature the charged black hole develops vector hair that corresponds to charged vector condensate in the strongly coupled (2+1) dimensional boundary field theory that breaks both the $U(1)$ symmetry as well as the rotational invariance. The holographic free energy is computed for the boundary field theory which shows that the vector order parameter exhibits a rich phase structure involving zeroth order, first order, second order and retrograde phase transitions for different values of the backreaction and the Born-Infeld parameters. We numerically compute the ac conductivity for the p-wave superconducting phase of the strongly coupled (2+1) dimensional boundary field theory which also depends on the relative values of the parameters in the theory.
The Abelian Born-Infeld classical non-linear electrodynamic has been used to investigate the electric and magnetostatic fields generated by a point-like electrical charge at rest in an inertial frame. The results show a rich internal structure for the charge. Analytical solutions have also been found. Such findings have been interpreted in terms of vacuum polarization and magnetic-like charges produced by the very high strengths of the electric field considered. Apparently non-linearity is to be accounted for the emergence of an anomalous magnetostatic field suggesting a possible connection to that created by a magnetic dipole composed of two mognetic charges with opposite signals. Consistently in situations where the Born-Infeld field strength parameter is free to become infinite, Maxwell`s regime takes over, the magnetic sector vanishes and the electric field assumes a Coulomb behavior with no trace of a magnetic component. The connection to other monopole solutions, like Dirac`s, t Hooft`s or Poliakov`s types, are also discussed. Finally some speculative remarks are presented in an attempt to explain such fields.