Do you want to publish a course? Click here

Dynamical behavior of damped driven coupled single electron simple harmonic oscillators

102   0   0.0 ( 0 )
 Added by M. S. M. Saifullah
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.



rate research

Read More

We study high-harmonic generation in two-dimensional electron systems with Rashba and Dresselhaus spin-orbit coupling and derive harmonic generation selection rules with the help of group theory. Based on the bandstructures of these minimal models and explicit simulations we reveal how the spin-orbit parameters control the cutoff energy in the high-harmonic spectrum. We also show that the magnetic field and polarization dependence of this spectrum provides information on the magnitude of the Rashba and Dresselhaus spin-orbit coupling parameters. The shape of the Fermi surface can be deduced at least qualitatively and if only one type of spin-orbit coupling is present, the coupling strength can be determined.
Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99 %, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.
The mutual interaction between the different eigenmodes of a spin-torque oscillator can lead to a large variety of physical mechanisms from mode hopping to multi-mode generation, that usually reduce their performances as radio-frequency devices. To tackle this issue for the future applications, we investigate the properties of a model spin-torque oscillator that is composed of two coupled vortices with one vortex in each of the two magnetic layers of the oscillator. In such double-vortex system, the remarkable properties of energy transfer between the coupled modes, one being excited by spin transfer torque while the second one being damped, result into an alteration of the damping parameters. As a consequence, the oscillator nonlinear behavior is concomitantly drastically impacted. This efficient coupling mechanism, driven mainly by the dynamic dipolar field generated by the spin transfer torque induced motion of the vortices, gives rise to an unexpected dynamical regime of self-resonance excitation. These results show that mode coupling can be leveraged for controlling the synchronization process as well as the frequency tunability of spin-torque oscillators.
We study the universal thermodynamic properties of systems consisting of many coupled oscillators operating in the vicinity of a homogeneous oscillating instability. In the thermodynamic limit, the Hopf bifurcation is a dynamic critical point far from equilibrium described by a statistical field theory. We perform a perturbative renormalization group study, and show that at the critical point a generic relation between correlation and response functions appears. At the same time the fluctuation-dissipation relation is strongly violated.
We develop a simple method for measuring the electron spin relaxation times $T_1$, $T_2$ and $T_2^*$ in semiconductors and demonstrate its exemplary application to $n$-type GaAs. Using an abrupt variation of the magnetic field acting on electron spins, we detect the spin evolution by measuring the Faraday rotation of a short laser pulse. Depending on the magnetic field orientation, this allows us to measure either the longitudinal spin relaxation time $T_1$ or the inhomogeneous transverse spin dephasing time $T_2^*$. In order to determine the homogeneous spin coherence time $T_2$, we apply a pulse of an oscillating radiofrequency (rf) field resonant with the Larmor frequency and detect the subsequent decay of the spin precession. The amplitude of the rf-driven spin precession is significantly enhanced upon additional optical pumping along the magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا