A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented.
Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and UHV endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2e10 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe$_2$, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe$_2$. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit.
The instrumental layout and technical realisation of the neutron resonant spin echo (NRSE) spectrometer RESEDA at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany, is presented. RESEDA is based on a longitudinal field configuration, boosting both dynamic range and maximum resolution of the spectrometer compared to the conventional transverse layout. The resonant neutron spin echo technique enables the realisation of two complementary implementations: A longitudinal NRSE (LNRSE) option comparable to the classical neutron spin echo (NSE) method for highest energy resolution and large momentum transfers as well as a Modulation of Intensity with Zero Effort (MIEZE) option for depolarising samples or sample environments such as high magnetic fields, and strong incoherent scattering samples. With their outstanding dynamic range, exceeding nominally seven orders of magnitude, both options cover new fields for ultra-high resolution neutron spectroscopy in hard and soft condensed matter systems. In this paper the concept of RESEDA as well as the technical realisation along with reference measurements are reported.
A novel design of high-voltage compatible polarimeter for spin-resolved hard x-ray photoelectron spectroscopy (Spin-HAXPES) went into operation at beamline BL09XU of SPring-8 in Hyogo, Japan. The detector is based on the well-established principle of electron diffraction from a W(001) single-crystal at a scattering energy of 103.5 eV. Its special feature is that it can be operated at a high negative bias potential up to 10 kV, necessary to access the HAXPES range. The polarimeter is operated behind a large hemispherical analyzer (Scienta R-4000). It was optimized for high transmission of the transfer optics. The exit plane of the analyzer contains a delay-line detector (20 mm dia.) for conventional multichannel intensity spectroscopy simultaneously with single-channel spin analysis. The performance of the combined setup is demonstrated by the first spin-resolved data for the valence-region of a FeCo functional layer of a tunneling device, buried beneath 3 nm of oxidic material. The well-structured spin polarization spectrum validates Spin-HAXPES in the valence energy range as powerful method for bulk electronic structure analysis. The spin polarization spectrum exhibits a rich structure, originating from clearly discernible transitions in the majority and minority partial spin spectra.
We present an experimental setup for laser-based angle-resolved time-of-flight (LARTOF) photoemission. Using a picosecond pulsed laser, photons of energy 10.5 eV are generated through higher harmonic generation in xenon. The high repetition rate of the light source, variable between 0.2-8 MHz, enables high photoelectron count rates and short acquisition times. By using a Time-of-Flight (ToF) analyzer with angle-resolving capabilities electrons emitted from the sample within a circular cone of up to pm15 degrees can be collected. Hence, simultaneous acquisition of photoemission data for a complete area of the Brillouin zone is possible. The current photon energy enables bulk sensitive measurements, high angular resolution and the resulting covered momentum space is large enough to enclose the entire Brillouin zone in cuprate high-Tc superconductors. Fermi edge measurements on polycrystalline Au shows an energy resolution better than 5 meV. Data from a test measurement of the Au(111) surface state is presented along with measurements of the Fermi surface of the high-Tc superconductor Bi2212.
The CAMEA ESS neutron spectrometer is designed to achieve a high detection efficiency in the horizontal scattering plane, and to maximize the use of the long pulse European Spallation Source. It is an indirect geometry time-of-flight spectrometer that uses crystal analysers to determine the final energy of neutrons scattered from the sample. Unlike other indirect gemeotry spectrometers CAMEA will use ten concentric arcs of analysers to analyse scattered neutrons at ten different final energies, which can be increased to 30 final energies by use of prismatic analysis. In this report we will outline the CAMEA instrument concept, the large performance gain, and the potential scientific advancements that can be made with this instrument.