Do you want to publish a course? Click here

Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters

218   0   0.0 ( 0 )
 Added by David Larson
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We present the angular power spectra derived from the 7-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. The third acoustic peak in the TT spectrum is now well measured by WMAP. In the context of a flat LambdaCDM model, this improvement allows us to place tighter constraints on the matter density from WMAP data alone, and on the epoch of matter-radiation equality, The temperature-polarization (TE) spectrum is detected in the 7-year data with a significance of 20 sigma, compared to 13 sigma with the 5-year data. The low-l EE spectrum, a measure of the optical depth due to reionization, is detected at 5.5 sigma significance when averaged over l = 2-7. The BB spectrum, an important probe of gravitational waves from inflation, remains consistent with zero. The upper limit on tensor modes from polarization data alone is a factor of 2 lower with the 7-year data than it was using the 5-year data (Komatsu et al. 2010). We test the parameter recovery process for bias and find that the scalar spectral index, ns, is biased high, but only by 0.09 sigma, while the remaining parameters are biased by < 0.15 sigma. The improvement in the third peak measurement leads to tighter lower limits from WMAP on the number of relativistic degrees of freedom (e.g., neutrinos) in the early universe: Neff > 2.7 (95% CL). Also, using WMAP data alone, the primordial helium mass fraction is found to be YHe = 0.28+0.14-0.15, and with data from higher-resolution CMB experiments included, we now establish the existence of pre-stellar helium at > 3 sigma (Komatsu et al. 2010).



rate research

Read More

(Abridged) The 7-year WMAP data and improved astrophysical data rigorously test the standard cosmological model and its extensions. By combining WMAP with the latest distance measurements from BAO and H0 measurement, we determine the parameters of the simplest LCDM model. The power-law index of the primordial power spectrum is n_s=0.968+-0.012, a measurement that excludes the scale-invariant spectrum by 99.5%CL. The other parameters are also improved from the 5-year results. Notable examples of improved parameters are the total mass of neutrinos, sum(m_nu)<0.58eV, and the effective number of neutrino species, N_eff=4.34+0.86-0.88. We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis. We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z=1090 and the dominance of adiabatic scalar fluctuations. With the 7-year TB power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved to Delta(alpha)=-1.1+-1.4(stat)+-1.5(syst) degrees. We report significant detections of the SZ effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data. However, it is a factor of 0.5 to 0.7 times the predictions from universal profile of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected SZ power spectrum recently measured by the South Pole Telescope collaboration.
161 - J. L. Weiland 2010
(Abridged) We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23 - 94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274 and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1-sigma of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase, and limits (but no detections) on linear polarization. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 micron, reproduce WMAP seasonally averaged observations of Mars within ~2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61 and 94 GHz bands; the smallest uncertainty for Neptune is ~8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at ~30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps, and are tabulated for Stokes I, Q and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A.
[Abridged] We present updated estimates of Galactic foreground emission using seven years of WMAP data. Using the power spectrum of differences between multi-frequency template-cleaned maps, we find no evidence for foreground contamination outside of the updated (KQ85y7) foreground mask. We place a 15 microKelvin upper bound on rms foreground contamination in the cleaned maps used for cosmological analysis. We find no indication in the polarization data of an extra haze of hard synchrotron emission from energetic electrons near the Galactic center. We provide an updated map of the cosmic microwave background (CMB) using the internal linear combination (ILC) method, updated foreground masks, and updates to point source catalogs with 62 newly detected sources. Also new are tests of the Markov chain Monte Carlo (MCMC) foreground fitting procedure against systematics in the time-stream data, and tests against the observed beam asymmetry. Within a few degrees of the Galactic plane, WMAP total intensity data show a rapidly steepening spectrum from 20-40 GHz, which may be due to emission from spinning dust grains, steepening synchrotron, or other effects. Comparisons are made to a 1-degree 408 MHz map (Haslam et al.) and the 11-degree ARCADE 2 data (Singal et al.). We find that spinning dust or steepening synchrotron models fit the combination of WMAP and 408 MHz data equally well. ARCADE data appear inconsistent with the steepening synchrotron model, and consistent with the spinning dust model, though some discrepancies remain regarding the relative strength of spinning dust emission. More high-resolution data in the 10-40 GHz range would shed much light on these issues.
172 - C. L. Bennett 2010
(Abridged) A simple six-parameter LCDM model provides a successful fit to WMAP data, both when the data are analyzed alone and in combination with other cosmological data. Even so, it is appropriate to search for any hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter LCDM model, various anomalies have been reported relative to that model. In this paper we examine potential anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the best fit model, one can select for low probability features of the WMAP data. Low probability features are expected, but it is not usually straightforward to determine whether any particular low probability feature is the result of the a posteriori selection or of non-standard cosmology. We examine in detail the properties of the power spectrum with respect to the LCDM model. We examine several potential or previously claimed anomalies in the sky maps and power spectra, including cold spots, low quadrupole power, quadropole-octupole alignment, hemispherical or dipole power asymmetry, and quadrupole power asymmetry. We conclude that there is no compelling evidence for deviations from the LCDM model, which is generally an acceptable statistical fit to WMAP and other cosmological data.
(Abridged) New full sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260 +-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016, n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles < 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, results in a 3 sigma detection of the abundance of primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the Harrison-Zeldovich-Peebles spectrum by >3 sigma. These new WMAP measurements provide important tests of Big Bang cosmology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا