No Arabic abstract
(Abridged) New full sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260 +-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016, n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles < 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, results in a 3 sigma detection of the abundance of primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the Harrison-Zeldovich-Peebles spectrum by >3 sigma. These new WMAP measurements provide important tests of Big Bang cosmology.
We present new full-sky temperature and polarization maps in five frequency bands from 23 to 94 GHz, based on data from the first five years of the WMAP sky survey. The five-year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the instrument calibration and in-flight beam response. We present several new tests for systematic errors in the polarization data and conclude that Ka band data (33 GHz) is suitable for use in cosmological analysis, after foreground cleaning. This significantly reduces the overall polarization uncertainty. With the 5 year WMAP data, we detect no convincing deviations from the minimal 6-parameter LCDM model: a flat universe dominated by a cosmological constant, with adiabatic and nearly scale-invariant Gaussian fluctuations. Using WMAP data combined with measurements of Type Ia supernovae and Baryon Acoustic Oscillations, we find (68% CL uncertainties): Omega_bh^2 = 0.02267 pm 0.00059, Omega_ch^2 = 0.1131 pm 0.0034, Omega_Lambda = 0.726 pm 0.015, n_s = 0.960 pm 0.013, tau = 0.084 pm 0.016, and Delta_R^2 = (2.445 pm 0.096) x 10^-9. From these we derive: sigma_8 = 0.812 pm 0.026, H_0 = 70.5 pm 1.3 km/s/Mpc, z_{reion} = 10.9 pm 1.4, and t_0 = 13.72 pm 0.12 Gyr. The new limit on the tensor-to-scalar ratio is r < 0.22 (95% CL). We obtain tight, simultaneous limits on the (constant) dark energy equation of state and spatial curvature: -0.14 < 1+w < 0.12 and -0.0179 < Omega_k < 0.0081 (both 95% CL). The number of relativistic degrees of freedom (e.g. neutrinos) is found to be N_{eff} = 4.4 pm 1.5, consistent with the standard value of 3.04. Models with N_{eff} = 0 are disfavored at >99.5% confidence.
We present full sky microwave maps in five bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are <0.5% and the low systematic error level is well specified. The 2<l<900 anisotropy power spectrum is cosmic variance limited for l<354 with a signal-to-noise ratio >1 per mode to l=658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is 0.17 +/- 0.04, which implies a reionization epoch of 180+220-80 Myr (95% CL) after the Big Bang at a redshift of 20+10-9 (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. The age of the best-fit universe is 13.7 +/- 0.2 Gyr old. Decoupling was 379+8-7 kyr after the Big Bang at a redshift of 1089 +/- 1. The thickness of the decoupling surface was dz=195 +/- 2. The matter density is Omega_m h^2 = 0.135 +0.008 -0.009, the baryon density is Omega_b h^2 = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega_tot = 1.02 +/- 0.02. The spectral index of scalar fluctuations is fit as n_s = 0.93 +/- 0.03 at wavenumber k_0 = 0.05 Mpc^-1, with a running index slope of dn_s/d ln k = -0.031 +0.016 -0.018 in the best-fit model. This flat universe model is composed of 4.4% baryons, 22% dark matter and 73% dark energy. The dark energy equation of state is limited to w<-0.78 (95% CL). Inflation theory is supported with n_s~1, Omega_tot~1, Gaussian random phases of the CMB anisotropy, and superhorizon fluctuations. An admixture of isocurvature modes does not improve the fit. The tensor-to-scalar ratio is r(k_0=0.002 Mpc^-1)<0.90 (95% CL).
(Abridged) The 7-year WMAP data and improved astrophysical data rigorously test the standard cosmological model and its extensions. By combining WMAP with the latest distance measurements from BAO and H0 measurement, we determine the parameters of the simplest LCDM model. The power-law index of the primordial power spectrum is n_s=0.968+-0.012, a measurement that excludes the scale-invariant spectrum by 99.5%CL. The other parameters are also improved from the 5-year results. Notable examples of improved parameters are the total mass of neutrinos, sum(m_nu)<0.58eV, and the effective number of neutrino species, N_eff=4.34+0.86-0.88. We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis. We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z=1090 and the dominance of adiabatic scalar fluctuations. With the 7-year TB power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved to Delta(alpha)=-1.1+-1.4(stat)+-1.5(syst) degrees. We report significant detections of the SZ effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data. However, it is a factor of 0.5 to 0.7 times the predictions from universal profile of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected SZ power spectrum recently measured by the South Pole Telescope collaboration.
We present the final nine-year maps and basic results from the WMAP mission. We provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate CMB anisotropy from foreground emission, and both types of signals are analyzed in detail. The WMAP mission has resulted in a highly constrained LCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that Big Bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (3.84+/-0.40). The model fit also implies that the age of the universe is 13.772+/-0.059 Gyr, and the fit Hubble constant is H0 = 69.32+/-0.80 km/s/Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity reported earlier by WMAP now has high statistical significance (n_s = 0.9608+/-0.0080); and the universe is close to flat/Euclidean, Omega_k = -0.0027 (+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter LCDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further. With no significant anomalies and an adequate goodness-of-fit, the inflationary flat LCDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.
(Abridged) We present the angular power spectra derived from the 7-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. The third acoustic peak in the TT spectrum is now well measured by WMAP. In the context of a flat LambdaCDM model, this improvement allows us to place tighter constraints on the matter density from WMAP data alone, and on the epoch of matter-radiation equality, The temperature-polarization (TE) spectrum is detected in the 7-year data with a significance of 20 sigma, compared to 13 sigma with the 5-year data. The low-l EE spectrum, a measure of the optical depth due to reionization, is detected at 5.5 sigma significance when averaged over l = 2-7. The BB spectrum, an important probe of gravitational waves from inflation, remains consistent with zero. The upper limit on tensor modes from polarization data alone is a factor of 2 lower with the 7-year data than it was using the 5-year data (Komatsu et al. 2010). We test the parameter recovery process for bias and find that the scalar spectral index, ns, is biased high, but only by 0.09 sigma, while the remaining parameters are biased by < 0.15 sigma. The improvement in the third peak measurement leads to tighter lower limits from WMAP on the number of relativistic degrees of freedom (e.g., neutrinos) in the early universe: Neff > 2.7 (95% CL). Also, using WMAP data alone, the primordial helium mass fraction is found to be YHe = 0.28+0.14-0.15, and with data from higher-resolution CMB experiments included, we now establish the existence of pre-stellar helium at > 3 sigma (Komatsu et al. 2010).