No Arabic abstract
In a system of noisy self-propelled particles with interactions that favor directional alignment, collective motion will appear if the density of particles increases beyond a certain threshold. In this paper, we argue that such a threshold may depend also on the profiles of the perturbation in the particle directions. Specifically, we perform mean-field, linear stability, perturbative and numerical analyses on an approximated form of the Fokker-Planck equation describing the system. We find that if an angular perturbation to an initially homogeneous system is large in magnitude and highly localized in space, it will be amplified and thus serves as an indication of the onset of collective motion. Our results also demonstrate that high particle speed promotes collective motion.
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-like fluctuation-induced force between neutral boundaries that confine the ions; this force is controlled by the external electric field, and it can be both attractive and repulsive with similar boundary conditions, unlike other long-range fluctuation-induced forces. This work highlights the importance of nonequilibrium correlations in electrolytes and shows how they can be used to tune interactions between uncharged biological or synthetic structures at large separations.
Understanding how electrolyte solutions behave out of thermal equilibrium is a long-standing endeavor in many areas of chemistry and biology. Although mean-field theories are widely used to model the dynamics of electrolytes, it is also important to characterize the effects of fluctuations in these systems. In a previous work, we showed that the dynamics of the ions in a strong electrolyte that is driven by an external electric field can generate long-ranged correlations manifestly different from the equilibrium screened correlations; in the nonequilibrium steady state, these correlations give rise to a novel long-range fluctuation-induced force (FIF). Here, we extend these results by considering the dynamics of the strong electrolyte after it is quenched from thermal equilibrium upon the application of a constant electric field. We show that the asymptotic long-distance limit of both charge and density correlations is generally diffusive in time. These correlations give rise to long-ranged FIFs acting on the neutral confining plates with long-time regimes that are governed by power-law temporal decays toward the steady-state value of the force amplitude. These findings show that nonequilibrium fluctuations have nontrivial implications on the dynamics of objects immersed in a driven electrolyte, and they could be useful for exploring new ways of controlling long-distance forces in charged solutions.
We study theoretically the effect of an external field on the nematic-smectic-A (NA) transition close to the tricritical point, where fluctuation effects govern the qualitative behavior of the transition. An external field suppresses nematic director fluctuations, by making them massive. For a fluctuation-driven first-order transition, we show that an external field can drive the transition second-order. In an appropriate liquid crystal system, we predict the required magnetic field to be of order 10 T. The equivalent electric field is of order $1 V/mu m$.
In this Letter, we study the collective behaviour of a large number of self-propelled microswimmers immersed in a fluid. Using unprecedently large-scale lattice Boltzmann simulations, we reproduce the transition to bacterial turbulence. We show that, even well below the transition, swimmers move in a correlated fashion that cannot be described by a mean-field approach. We develop a novel kinetic theory that captures these correlations and is non-perturbative in the swimmer density. To provide an experimentally accessible measure of correlations, we calculate the diffusivity of passive tracers and reveal its non-trivial density dependence. The theory is in quantitative agreement with the lattice Boltzmann simulations and captures the asymmetry between pusher and puller swimmers below the transition to turbulence.
We investigate how light polarization affects the motion of photo-responsive algae, textit{Euglena gracilis}. In a uniformly polarized field, cells swim approximately perpendicular to the polarization direction and form a nematic state with zero mean velocity. When light polarization varies spatially, cell motion is modulated by local polarization. In such light fields, cells exhibit complex spatial distribution and motion patterns which are controlled by topological properties of the underlying fields; we further show that ordered cell swimming can generate directed transporting fluid flow. Experimental results are quantitatively reproduced by an active Brownian particle model in which particle motion direction is nematically coupled to local light polarization.