Do you want to publish a course? Click here

D-Meson Mixing in 2+1-Flavor Lattice QCD

73   0   0.0 ( 0 )
 Added by Andreas S. Kronfeld
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.



rate research

Read More

We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the matrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis.
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five $Delta C=2$ four-fermion operators that contribute to neutral $D$-meson mixing both in and beyond the Standard Model. We use the MILC Collaborations $N_f = 2+1$ lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as $M_pi approx 180$ MeV and lattice spacings as fine as $aapprox 0.045$ fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the $overline{text{MS}}$-NDR scheme using the choice of evanescent operators proposed by Beneke emph{et al.}, evaluated at 3 GeV, $langle D^0|mathcal{O}_i|bar{D}^0 rangle = {0.0805(55)(16), -0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)}~text{GeV}^4$ ($i=1$--5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in $D^0$~mixing, finding lower limits of about 10--50$times 10^3$ TeV for couplings of $mathrm{O}(1)$. To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly-used scheme of Buras, Misiak, and Urban.
We present an update of the Fermilab-MILC Collaborations calculation of hadronic matrix elements for B^0-bar{B^0} mixing. This work is a more extended analysis than our recent publication of the SU(3)-breaking ratio xi [arXiv:1205.7013]. We use the asqtad staggered action for light valence quarks in combination with the Fermilab interpretation of the Sheikoleslami-Wohlert action for heavy quarks. The calculations use MILCs 2+1 flavor asqtad ensembles. Ensembles include four lattice spacings from approximately 0.125 fm to 0.045 fm and up/down to strange quark mass ratios as low as 0.05. Our calculation covers the complete set of five operators needed to describe B mixing in the Standard Model and beyond. In addition to an update including a fuller set of analyzed data, we comment on the form of the staggered ChPT extrapolation function.
182 - K. U. Can , G. Erkol , M. Oka 2012
Using the axial-vector coupling and the electromagnetic form factors of the D and D* mesons in 2+1 flavor Lattice QCD, we compute the D*Dpi, DDrho and D*D*rho coupling constants, which play an important role in describing the charm hadron interactions in terms of meson-exchange models. We also extract the charge radii of D and D* mesons and determine the contributions of the light and charm quarks separately.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا