Do you want to publish a course? Click here

The low-mass Initial Mass Function in the 30 Doradus starburst cluster

136   0   0.0 ( 0 )
 Added by Morten Andersen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep Hubble Space Telescope (HST) NICMOS 2 F160W band observations of the central 56*57 (14pc*14.25pc) region around R136 in the starburst cluster 30 Dor (NGC 2070) located in the Large Magellanic Cloud. Our aim is to derive the stellar Initial Mass Function (IMF) down to ~1 Msun in order to test whether the IMF in a massive metal-poor cluster is similar to that observed in nearby young clusters and the field in our Galaxy. We estimate the mean age of the cluster to be 3 Myr by combining our F160W photometry with previously obtained HST WFPC2 optical F555W and F814W band photometry and comparing the stellar locus in the color-magnitude diagram with main sequence and pre-main sequence isochrones. The color-magnitude diagrams show the presence of differential extinction and possibly an age spread of a few megayears. We convert the magnitudes into masses adopting both a single mean age of 3 Myr isochrone and a constant star formation history from 2 to 4 Myr. We derive the IMF after correcting for incompleteness due to crowding. The faintest stars detected have a mass of 0.5 Msun and the data are more than 50% complete outside a radius of 5 pc down to a mass limit of 1.1 Msun for 3 Myr old objects. We find an IMF of dN/dlog(M) M^(-1.20+-0.2) over the mass range 1.1--20 Msun only slightly shallower than a Salpeter IMF. In particular, we find no strong evidence for a flattening of the IMF down to 1.1 Msun at a distance of 5 pc from the center, in contrast to a flattening at 2 Msun at a radius of 2 pc, reported in a previous optical HST study. We examine several possible reasons for the different results. If the IMF determined here applies to the whole cluster, the cluster would be massive enough to remain bound and evolve into a relatively low-mass globular cluster.



rate research

Read More

Westerlund 1 is the most important starburst cluster in the Galaxy due to its massive star content. We have performed BVIc and JKs photometry to investigate the initial mass function (IMF). By comparing the observed color with the spectral type - intrinsic color relation, we obtain the mean interstellar reddening of <E(B-V)>=4.19+/-0.23 and <E(J-Ks)>=1.70+/-0.21. Due to the heavy extinction toward the cluster, the zero-age main sequence fitting method based on optical photometry proved to be inappropriate for the distance determination, while the near-infrared photometry gave a reliable distance to the cluster -- 3.8 kpc from the empirical relation. Using the recent theoretical stellar evolution models with rotation, the age of the cluster is estimated to be 5.0+/-1.0 Myr. We derived the IMF in the massive part and obtained a fairly shallow slope of {Gamma} = -0.8 +/- 0.1. The integration of the IMF gave a total mass for the cluster in excess of 5.0 x 10^4 solar mass. The IMF shows a clear radial variation indicating the presence of mass segregation. We also discuss the possible star formation history of Westerlund 1 from the presence of red supergiants and relatively low-luminosity yellow hypergiants.
NGC 6611 is the massive young cluster (2-3 Myr) that ionises the Eagle Nebula. We present very deep photometric observations of the central region of NGC 6611 obtained with the Hubble Space Telescope and the following filters: ACS/WFC F775W and F850LP and NIC2 F110W and F160W, loosely equivalent to ground-based IZJH filters. This survey reaches down to I ~ 26 mag. We construct the Initial Mass Function (IMF) from ~ 1.5 Msun well into the brown dwarf regime (down to ~ 0.02 Msun). We have detected 30-35 brown dwarf candidates in this sample. The low-mass IMF is combined with a higher-mass IMF constructed from the groundbased catalogue from Oliveira et al. (2005). We compare the final IMF with those of well studied star forming regions: we find that the IMF of NGC 6611 more closely resembles that of the low-mass star forming region in Taurus than that of the more massive Orion Nebula Cluster (ONC). We conclude that there seems to be no severe environmental effect in the IMF due to the proximity of the massive stars in NGC 6611.
Determining the efficiency with which gas is converted into stars in galaxies requires an accurate determination of the total reservoir of molecular gas mass. However, despite being the most abundant molecule in the Universe, H$_2$ is challenging to detect through direct observations and indirect methods have to be used to estimate the total molecular gas reservoir. These are often based on scaling relations from tracers such as CO or dust, and are generally calibrated in the Milky Way. Yet, evidence that these scaling relations are environmentally dependent is growing. In particular, the commonly used CO-to-H$_2$ conversion factor (X$_{rm CO}$) is expected to be higher in metal-poor and/or strongly UV-irradiated environments. We use new SOFIA/FIFI-LS observations of far-infrared fine structure lines from the ionised and neutral gas and the Meudon photodissociation region model to constrain the physical properties and the structure of the gas in the massive star-forming region of 30 Doradus in the Large Magellanic Cloud, and determine the spatially resolved distribution of the total reservoir of molecular gas in the proximity of the young massive cluster R136. We compare this value with the molecular gas mass inferred from ground-based CO observations and dust-based estimates to quantify the impact of this extreme environment on commonly used tracers of the molecular gas. We find that the strong radiation field combined with the half-solar metallicity of the surrounding gas are responsible for a large reservoir of CO-dark molecular gas, leaving a large fraction of the total H$_2$ gas (> 75%) undetected when adopting a standard X$_{rm CO}$ factor in this massive star-forming region.
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain high-precision proper motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to 1.8 M$_{odot}$ between cluster radii of 0.25 pc -- 3.0 pc. We achieve a cluster sample with just ~8% field contamination, a significant improvement over photometrically-selected samples which are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of 5 cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a 1-segment power law that is significantly top-heavy: $alpha$ = 1.80 $pm$ 0.05 (stat) $pm$ 0.06 (sys), where dN/dm $propto$ m$^{-alpha}$, though we cannot discount a 2-segment power law model with a high-mass slope only slightly shallower than local star forming regions ($alpha$ = 2.04$^{+0.14}_{-0.19}$ $pm$ 0.04) but with a break at 5.8$^{+3.2}_{-1.2}$ $pm$ 0.02 M$_{odot}$. In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic Center.
We discuss the possibility that gravitational focusing, is responsible for the power-law mass function of star clusters $N(log M) propto M^{-1}$. This power law can be produced asymptotically when the mass accretion rate of an object depends upon the mass of the accreting body as $dot{M} propto M^2$. While Bondi-Hoyle-Littleton accretion formally produces this dependence on mass in a uniform medium, realistic environments are much more complicated. However, numerical simulations in SPH allowing for sink formation yield such an asymptotic power-law mass function. We perform pure N-body simulations to isolate the effects of gravity from those of gas physics and to show that clusters naturally result with the power-law mass distribution. We also consider the physical conditions necessary to produce clusters on appropriate timescales. Our results help support the idea that gravitationally-dominated accretion is the most likely mechanism for producing the cluster mass function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا