No Arabic abstract
We discuss the possibility that gravitational focusing, is responsible for the power-law mass function of star clusters $N(log M) propto M^{-1}$. This power law can be produced asymptotically when the mass accretion rate of an object depends upon the mass of the accreting body as $dot{M} propto M^2$. While Bondi-Hoyle-Littleton accretion formally produces this dependence on mass in a uniform medium, realistic environments are much more complicated. However, numerical simulations in SPH allowing for sink formation yield such an asymptotic power-law mass function. We perform pure N-body simulations to isolate the effects of gravity from those of gas physics and to show that clusters naturally result with the power-law mass distribution. We also consider the physical conditions necessary to produce clusters on appropriate timescales. Our results help support the idea that gravitationally-dominated accretion is the most likely mechanism for producing the cluster mass function.
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain high-precision proper motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to 1.8 M$_{odot}$ between cluster radii of 0.25 pc -- 3.0 pc. We achieve a cluster sample with just ~8% field contamination, a significant improvement over photometrically-selected samples which are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of 5 cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a 1-segment power law that is significantly top-heavy: $alpha$ = 1.80 $pm$ 0.05 (stat) $pm$ 0.06 (sys), where dN/dm $propto$ m$^{-alpha}$, though we cannot discount a 2-segment power law model with a high-mass slope only slightly shallower than local star forming regions ($alpha$ = 2.04$^{+0.14}_{-0.19}$ $pm$ 0.04) but with a break at 5.8$^{+3.2}_{-1.2}$ $pm$ 0.02 M$_{odot}$. In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic Center.
The stellar initial mass function (IMF) is a fundamental property of star formation, offering key insight into the physics driving the process as well as informing our understanding of stellar populations, their by-products, and their impact on the surrounding medium. While the IMF appears to be fairly uniform in the Milky Way disk, it is not yet known how the IMF might behave across a wide range of environments, such as those with extreme gas temperatures and densities, high pressures, and low metallicities. We discuss new opportunities for measuring the IMF in such environments in the coming decade with JWST, WFIRST, and thirty-meter class telescopes. For the first time, we will be able to measure the high-mass slope and peak of the IMF via direct star counts for massive star clusters across the Milky Way and Local Group, providing stringent constraints for star formation theory and laying the groundwork for understanding distant and unresolved stellar systems.
We present a new census of the Orion Nebula Cluster (ONC) over a large field of view (>30x30), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a technique to determine stellar effective temperatures from optical colors, nearly doubling the previously available number of objects with effective temperature determinations in this benchmark cluster. Our technique utilizes colors from deep photometry in the I-band and in two medium-band filters at lambda~753 and 770nm, which accurately measure the depth of a molecular feature present in the spectra of cool stars. From these colors we can derive effective temperatures with a precision corresponding to better than one-half spectral subtype, and importantly this precision is independent of the extinction to the individual stars. Also, because this technique utilizes only photometry redward of 750nm, the results are only mildly sensitive to optical veiling produced by accretion. Completing our census with previously available data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign masses and ages down to 0.02 solar masses. At faint luminosities, we detect a large population of background sources which is easily separated in our photometry from the bona fide cluster members. The resulting initial mass function of the cluster has good completeness well into the substellar mass range, and we find that it declines steeply with decreasing mass. This suggests a deficiency of newly formed brown dwarfs in the cluster compared to the Galactic disk population.
We test the hypothesis that the initial mass function (IMF) is determined by the density probability distribution function (PDF) produced by supersonic turbulence. We compare 14 simulations of star cluster formation in 50 solar mass molecular cloud cores where the initial turbulence contains either purely solenoidal or purely compressive modes, in each case resolving fragmentation to the opacity limit to determine the resultant IMF. We find statistically indistinguishable IMFs between the two sets of calculations, despite a factor of two difference in the star formation rate and in the standard deviation of $log(rho)$. This suggests that the density PDF, while determining the star formation rate, is not the primary driver of the IMF.
We analyse a hydrodynamical simulation of star formation. Sink particles in the simulations which represent stars show episodic growth, which is presumably accretion from a core that can be regularly replenished in response to the fluctuating conditions in the local environment. The accretion rates follow $dot{m} propto m^{2/3}$, as expected from accretion in a gas-dominated potential, but with substantial variations over-laid on this. The growth times follow an exponential distribution which is tapered at long times due to the finite length of the simulation. The initial collapse masses have an approximately lognormal distribution with already an onset of a power-law at large masses. The sink particle mass function can be reproduced with a non-linear stochastic process, with fluctuating accretion rates $propto m^{2/3}$, a distribution of seed masses and a distribution of growth times. All three factors contribute equally to the form of the final sink mass function. We find that the upper power law tail of the IMF is unrelated to Bondi-Hoyle accretion.