Do you want to publish a course? Click here

Simulations of supersymmetric Yang-Mills theory

167   0   0.0 ( 0 )
 Added by Gernot Muenster
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Results of a numerical simulation concerning the low-lying spectrum of four-dimensional N=1 SU(2) Supersymmetric Yang-Mills (SYM) theory on the lattice with light dynamical gluinos are reported. We use the tree-level Symanzik improved gauge action and Wilson fermions with stout smearing of the gauge links in the Wilson-Dirac operator. The configurations are produced with the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithm. We performed simulations on lattices up to a size of 24^3x48 at beta=1.6. Using QCD units with the Sommer scale being set to r_0=0.5 fm, the lattice spacing is about a~0.09 fm, and the spatial extent of the lattice corresponds to 2.1 fm to control finite size effects. At the lightest simulated gluino mass our results indicate a mass for the lightest gluino-glue bound state, which is considerably heavier than the values obtained for its possible superpartners. Whether supermultiplets are formed remains to be studied in upcoming simulations.



rate research

Read More

The behavior of supersymmetric theories at finite temperatures differs from that of other theories in certain aspects. Due to the different thermal statistics of bosons and fermions, supersymmetry is explicitly broken for any non-zero value of the temperature. We study N=1 supersymmetric Yang-Mills theory on the lattice at finite temperatures. This model is the simplest supersymmetric extension of the pure gauge sector of QCD, describing the interactions between gluons and their fermionic superpartners, the gluinos. At zero temperature the theory confines like QCD, and chiral symmetry is spontaneously broken. At high temperatures, deconfinement and chiral symmetry restoration are expected to take place, but it is not known whether these two phase transitions coincide or not. First results on this topic, obtained in numerical simulations on the lattice, will be presented and discussed.
135 - David Schaich 2015
Non-perturbative investigations of $mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing. A recent development is the creation of an improved lattice action through a new procedure to regulate flat directions in a manner compatible with this supersymmetry, by modifying the moduli equations. In this proceedings I briefly summarize this new procedure and discuss the parameter space of the resulting improved action that is now being employed in numerical calculations.
Supersymmetry (SUSY) has been proposed to be a central concept for the physics beyond the standard model and for a description of the strong interactions in the context of the AdS/CFT correspondence. A deeper understanding of these developments requires the knowledge of the properties of supersymmetric models at finite temperatures. We present a Monte Carlo investigation of the finite temperature phase diagram of the N=1 supersymmetric Yang-Mills theory (SYM) regularised on a space-time lattice. The model is in many aspects similar to QCD: quark confinement and fermion condensation occur in the low temperature regime of both theories. A comparison to QCD is therefore possible. The simulations show that for N=1 SYM the deconfinement temperature has a mild dependence on the fermion mass. The analysis of the chiral condensate susceptibility supports the possibility that chiral symmetry is restored near the deconfinement phase transition.
159 - C. Anastasiou , Z. Bern , L. Dixon 2003
The collinear factorization properties of two-loop scattering amplitudes in dimensionally-regulated N=4 super-Yang-Mills theory suggest that, in the planar (t Hooft) limit, higher-loop contributions can be expressed entirely in terms of one-loop amplitudes. We demonstrate this relation explicitly for the two-loop four-point amplitude and, based on the collinear limits, conjecture an analogous relation for n-point amplitudes. The simplicity of the relation is consistent with intuition based on the AdS/CFT correspondence that the form of the large N_c L-loop amplitudes should be simple enough to allow a resummation to all orders.
We present some of the latest results from our numerical investigations of N=4 supersymmetric Yang--Mills theory formulated on a space-time lattice. Based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, we recently developed an improved lattice action that is now being employed in large-scale calculations. Here we update our studies of the static potential using this new action, also applying tree-level lattice perturbation theory to improve the analysis of the potential itself. Considering relatively weak couplings, we obtain results for the Coulomb coefficient that are consistent with continuum perturbation theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا