No Arabic abstract
We present some of the latest results from our numerical investigations of N=4 supersymmetric Yang--Mills theory formulated on a space-time lattice. Based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, we recently developed an improved lattice action that is now being employed in large-scale calculations. Here we update our studies of the static potential using this new action, also applying tree-level lattice perturbation theory to improve the analysis of the potential itself. Considering relatively weak couplings, we obtain results for the Coulomb coefficient that are consistent with continuum perturbation theory.
Non-perturbative investigations of $mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing. A recent development is the creation of an improved lattice action through a new procedure to regulate flat directions in a manner compatible with this supersymmetry, by modifying the moduli equations. In this proceedings I briefly summarize this new procedure and discuss the parameter space of the resulting improved action that is now being employed in numerical calculations.
For all types of N=4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly N=4 supersymmetric Yang-Mills (SYM) actions are explicitly given in the cases of (2,2) and critical (4,0) AdS supersymmetries. The N=4 vector multiplets and the corresponding actions are then reduced to (2,0) AdS superspace, in which only N=2 supersymmetry is manifest. Using the off-shell structure of the N=4 vector multiplets, we provide complete N=4 SYM actions in (2,0) AdS superspace for all types of N=4 AdS supersymmetry. In the case of (4,0) AdS supersymmetry, which admits a Euclidean counterpart, the resulting N=2 action contains a Chern-Simons term proportional to q/r, where r is the radius of AdS_3 and q is the R-charge of a chiral scalar superfield. The R-charge is a linear inhomogeneous function of X, an expectation value of the N=4 Cotton superfield. Thus our results explain the mysterious structure of N=4 supersymmetric Yang-Mills theories on S^3 discovered in arXiv:1401.7952. In the case of (3,1) AdS supersymmetry, which has no Euclidean counterpart, the SYM action contains both a Chern-Simons term and a chiral mass-like term. In the case of (2,2) AdS supersymmetry, which admits a Euclidean counterpart, the SYM action has no Chern-Simons and chiral mass-like terms.
We calculate the resummed perturbative free energy of ${cal N}=4$ supersymmetric Yang-Mills in four spacetime dimensions ($text{SYM}_{4,4}$) through second order in the t Hooft coupling $lambda$ at finite temperature and zero chemical potential. Our final result is ultraviolet finite and all infrared divergences generated at three-loop level are canceled by summing over $text{SYM}_{4,4}$ ring diagrams. Non-analytic terms at ${cal O}({lambda}^{3/2}) $ and $ {cal O}({lambda}^2 loglambda )$ are generated by dressing the $A_0$ and scalar propagators. The gauge-field Debye mass $m_D$ and the scalar thermal mass $M_D$ are determined from their corresponding finite-temperature self-energies. Based on this, we obtain the three-loop thermodynamic functions of $text{SYM}_{4,4}$ to ${cal O}(lambda^2)$. We compare our final result with prior results obtained in the weak- and strong-coupling limits and construct a generalized Pad{e} approximant that interpolates between the weak-coupling result and the large-$N_c$ strong-coupling result. Our results suggest that the ${cal O}(lambda^2)$ weak-coupling result for the scaled entropy density is a quantitatively reliable approximation to the scaled entropy density for $0 leq lambda lesssim 2$.
We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, and we review a new procedure to regulate flat directions by modifying the moduli equations in a manner compatible with this supersymmetry. This procedure defines an improved lattice action that we have begun to use in numerical calculations. We discuss some highlights of these investigations, including the static potential and an update on the question of a possible sign problem in the lattice theory.
Owing to confinement, the fundamental particles of N=1 Supersymmetric Yang-Mills (SYM) theory, gluons and gluinos, appear only in colourless bound states at zero temperature. Compactifying the Euclidean time dimension with periodic boundary conditions for fermions preserves supersymmetry, and confinement is predicted to persist independently of the length of the compactified dimension. This scenario can be tested non-perturbatively with Monte-Carlo simulations on a lattice. SUSY is, however, broken on the lattice and can be recovered only in the continuum limit. The partition function of compactified N=1 SYM theory with periodic fermion boundary conditions corresponds to the Witten index. Therefore it can be used to test whether supersymmetry is realized on the lattice. Results of our recent numerical simulations are presented, supporting the disappearance of the deconfinement transition in the supersymmetric limit and the restoration of SUSY at low energies.