Following our previous paper in the radial case, we consider blow-up type II solutions to the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution of the equation. Up to the symmetries of the equation, under an appropriate smallness assumption, any type II blow-up solution is asymptotically a regular solution plus a rescaled Lorentz transform of W concentrating at the origin.
We describe the asymptotic behavior of positive solutions $u_epsilon$ of the equation $-Delta u + au = 3,u^{5-epsilon}$ in $Omegasubsetmathbb{R}^3$ with a homogeneous Dirichlet boundary condition. The function $a$ is assumed to be critical in the sense of Hebey and Vaugon and the functions $u_epsilon$ are assumed to be an optimizing sequence for the Sobolev inequality. Under a natural nondegeneracy assumption we derive the exact rate of the blow-up and the location of the concentration point, thereby proving a conjecture of Brezis and Peletier (1989). Similar results are also obtained for solutions of the equation $-Delta u + (a+epsilon V) u = 3,u^5$ in $Omega$.
We consider the energy supercritical heat equation with the $(n-3)$-th Sobolev exponent begin{equation*} begin{cases} u_t=Delta u+u^{3},~&mbox{ in } Omegatimes (0,T), u(x,t)=u|_{partialOmega},~&mbox{ on } partialOmegatimes (0,T), u(x,0)=u_0(x),~&mbox{ in } Omega, end{cases} end{equation*} where $5leq nleq 7$, $Omega=R^n$ or $Omega subset R^n$ is a smooth, bounded domain enjoying special symmetries. We construct type II finite time blow-up solution $u(x,t)$ with the singularity taking place along an $(n-4)$-dimensional {em shrinking sphere} in $Omega$. More precisely, at leading order, the solution $u(x,t)$ is of the sharply scaled form $$u(x,t)approx la^{-1}(t)frac{2sqrt{2}}{1+left|frac{(r,z)-(xi_r(t),xi_z(t))}{la(t)}right|^2}$$ where $r=sqrt{x_1^2+cdots+x_{n-3}^2}$, $z=(x_{n-2},x_{n-1},x_n)$ with $x=(x_1,cdots,x_n)inOmega$. Moreover, the singularity location $$(xi_r(t),xi_z(t))sim (sqrt{2(n-4)(T-t)},z_0)~mbox{ as }~t earrow T,$$ for some fixed $z_0$, and the blow-up rate $$la(t)sim frac{T-t}{|log(T-t)|^2}~mbox{ as }~t earrow T.$$ This is a completely new phenomenon in the parabolic setting.
We prove that any sufficiently differentiable space-like hypersurface of ${mathbb R}^{1+N} $ coincides locally around any of its points with the blow-up surface of a finite-energy solution of the focusing nonlinear wave equation $partial_{tt} u - Delta u=|u|^{p-1} u$ on ${mathbb R} times {mathbb R} ^N$, for any $1leq Nleq 4$ and $1 < p le frac {N+2} {N-2}$. We follow the strategy developed in our previous work [arXiv 1812.03949] on the construction of solutions of the nonlinear wave equation blowing up at any prescribed compact set. Here to prove blowup on a local space-like hypersurface, we first apply a change of variable to reduce the problem to blowup on a small ball at $t=0$ for a transformed equation. The construction of an appropriate approximate solution is then combined with an energy method for the existence of a solution of the transformed problem that blows up at $t=0$. To obtain a finite-energy solution of the original problem from trace arguments, we need to work with $H^2times H^1$ solutions for the transformed problem.
We prove that the critical Wave Maps equation with target $S^2$ and origin $mathbb{R}^{2+1}$ admits energy class blow up solutions of the form $$u(t,r)=Q(lambda(t)r)+epsilon(t,r)$$where $Q: mathbb{R}^2 to S^2$ is the ground state harmonic map and $lambda(t) = t^{-1- u}$ for any $ u > 0$. This extends the work [13], where such solutions were constructed under the assumption $ u > 1/2$. In light of a result of Struwe [22], our result is optimal for polynomial blow up rates.