Do you want to publish a course? Click here

Integer and Fractional Quantum Hall Effect in Two-Terminal Measurements on Suspended Graphene

277   0   0.0 ( 0 )
 Added by Eva Y. Andrei
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the observation of the quantized Hall effect in suspended graphene probed with a two-terminal lead geometry. The failure of earlier Hall-bar measurements is discussed and attributed to the placement of voltage probes in mesoscopic samples. New quantized states are found at integer Landau level fillings outside the sequence 2,6,10.., as well as at a fractional filling u=1/3. Their presence is revealed by plateaus in the two-terminal conductance which appear in magnetic fields as low as 2 Tesla at low temperatures and persist up to 20 Kelvin in 12 Tesla. The excitation gaps, extracted from the data with the help of a theoretical model, are found to be significantly larger than in GaAs based electron systems.



rate research

Read More

163 - E. Berg , Y. Oreg , E.-A. Kim 2008
We propose ways to create and detect fractionally charged excitations in emph{integer} quantum Hall edge states. The charge fractionalization occurs due to the Coulomb interaction between electrons propagating on different edge channels. The fractional charge of the soliton-like collective excitations can be observed in time resolved or frequency dependent shot noise measurements.
In this review the physics of Pfaffian paired states, in the context of fractional quantum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are prime examples of topological ($p$-wave) Cooper pairing and are characterized by non-Abelian statistics of their quasiparticles. Here we focus on conditions for their realization and competition among them at half-integer filling factors. Using the Dirac composite fermion description, in the presence of a mass term, we study the influence of Landau level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are selected when Landau level mixing is not strong, and can be taken into account perturbatively, the PH Pfaffian state requires non-perturbative inclusion of at least two Landau levels. Our findings, for small Landau level mixing, are in accordance with numerical investigations in the literature, and call for a non-perturbative approach in the search for PH Pfaffian correlations. We demonstrated that a method based on the Chern-Simons field-theoretical approach can be used to generate characteristic interaction pseudo-potentials for Pfaffian paired states.
Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In the presence of a smooth confining potential it was hitherto believed that this picture may only be partially modified by the appearance of additional counterpropagating integer-charge modes. Here, we demonstrate the breakdown of this paradigm: The system favors the formation of edge modes supporting fractional excitations. This accounts for previous observations, and leads to additional predictions amenable to experimental tests.
227 - D. A. Abanin , I. Skachko , X. Du 2009
Strongly correlated electron liquids which occur in quantizing magnetic fields reveal a cornucopia of fascinating quantum phenomena such as fractionally charged quasiparticles, anyonic statistics, topological order, and many others. Probing these effects in GaAs-based systems, where electron interactions are relatively weak, requires sub-kelvin temperatures and record-high electron mobilities, rendering some of the most interesting states too fragile and difficult to access. This prompted a quest for new high-mobility systems with stronger electron interactions. Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to T=10 K. The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we pose and solve the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a method, based on the conformal invariance of two-dimensional magnetotransport, and illustrate its use by analyzing the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized nu=1/3 state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a new tool for the studies of quantum transport in suspended graphene and other nanoscale systems.
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. We provide compelling theoretical evidence that the localization of a single quasiparticle of the fractional quantum Hall state at filling factor $ u=n/(2n+1)$ has a striking {it quantitative} correspondence to the localization of a single electron in the $(n+1)$th Landau level. By analogy to the dramatic experimental manifestations of Anderson localization in integer quantum Hall effect, this leads to predictions in the fractional quantum Hall regime regarding the existence of extended states at a critical energy, and the nature of the divergence of the localization length as this energy is approached. Within a mean field approximation these results can be extended to situations where a finite density of quasiparticles is present.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا