No Arabic abstract
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. We provide compelling theoretical evidence that the localization of a single quasiparticle of the fractional quantum Hall state at filling factor $ u=n/(2n+1)$ has a striking {it quantitative} correspondence to the localization of a single electron in the $(n+1)$th Landau level. By analogy to the dramatic experimental manifestations of Anderson localization in integer quantum Hall effect, this leads to predictions in the fractional quantum Hall regime regarding the existence of extended states at a critical energy, and the nature of the divergence of the localization length as this energy is approached. Within a mean field approximation these results can be extended to situations where a finite density of quasiparticles is present.
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire electron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the groundstate of a Hamiltonian that we explicitly construct.
We study the current correlations of fractional quantum Hall edges at the output of a quantum point contact (QPC) subjected to a temperature gradient. This out-of-equilibrium situation gives rise to a form of temperature-activated shot noise, dubbed delta-$T$ noise. We show that the tunneling of Laughlin quasiparticles leads to a negative delta-$T$ noise, in stark contrast with electron tunneling. Moreover, varying the transmission of the QPC or applying a voltage bias across the Hall bar may flip the sign of this noise contribution, yielding signatures which can be accessed experimentally.
We discuss anomalous fractional quantum Hall effect that exists without external magnetic field. We propose that excitations in such systems may be described effectively by non-interacting particles with the Hamiltonians defined on the Brillouin zone with a branch cut. Hall conductivity of such a system is expressed through the one-particle Green function. We demonstrate that for the Hamiltonians of the proposed type this expression takes fractional values times Klitzing constant. Possible relation of the proposed construction with degeneracy of ground state is discussed as well.
We study theoretically resonant tunneling of composite fermions through their quasi-bound states around a fractional quantum Hall island, and find a rich set of possible transitions of the island state as a function of the magnetic field or the backgate voltage. These considerations have possible relevance to a recent experimental study, and bring out many subtleties involved in deducing fractional braiding statistics.
The lowest-Landau-level anyon model becomes nonperiodic in the statistics parameter when the finite size of the attached flux tubes is taken into account. The finite-size effects cause the inverse proportional relation between the critical filling factor and the statistics parameter to be nonperiodically continued in the screening regime, where the fluxes are anti-parallel to the external magnetic field -- at critical filling, the external magnetic field is entirely screened by the mean magnetic field associated with the flux tubes. A clustering argument is proposed to select particular values of the statistics parameter. In this way, IQHE and FQHE fillings are obtained in terms of gapped nondegenerate LLL-anyonic wave functions. Jains series are reproduced without the need to populate higher Landau levels. New FQHE series are proposed, like, in particular, the particle-hole complementary series of the Laughlin one. For fast-rotating Bose-Einstein condensates, a corresponding clustering argument yields particular fractional filling series.