No Arabic abstract
Using a high-statistics sample of anti-neutrino charged current quasi-elastic (CCQE) events, MiniBooNE reports the challenges in measuring parameters within the Relativistic Fermi Gas model. As the CCQE analysis has been completed in MiniBooNEs neutrino data, particular attention is paid to the differences in CCQE interactions between the two running modes.
MiniBooNE anti-neutrino charged-current quasi-elastic (CCQE) data is compared to model predictions. The main background of neutrino-induced events is examined first, where three independent techniques are employed. Results indicate the neutrino flux is consistent with a uniform reduction of $sim$ 20% relative to the largely uncertain prediction. After background subtraction, the $Q^{2}$ shape of $ umub$ CCQE events is consistent with the model parameter $M_{A}$ = 1.35 GeV determined from MiniBooNE $ umu$ CCQE data, while the normalization is $sim$ 20% high compared to the same prediction.
The largest sample ever recorded of $ umub$ charged-current quasi-elastic (CCQE, $ umub + p to mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $frac{d^{2}sigma}{dT_mu duz}$ for $ umub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $sigma(E_ u)$ and single-differential cross section $frac{dsigma}{dqsq}$ on both mineral oil and on carbon by subtracting the $ umub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.
In this work, we study charged current quasi elastic scattering of muon anti-neutrino off nucleon and nucleus using a formalism based on Llewellyn Smith (LS) model. Parameterizations by Galster et al. are used for electric and magnetic Sachs form factors of nucleons. We use Fermi gas model along with Pauli suppression condition to take into account the nuclear effects in anti-neutrino - nucleus QES. We calculate muon anti-neutrino-p and muon anti-neutrino-^{12}C charged current quasi elastic scattering differential and total cross sections for different values of axial mass M_{A} and compare the results with data from GGM, SKAT, BNL, NOMAD, MINERvA and MiniBooNE experiments. The present theoretical approach gives an excellent description of differential cross section data. The calculations with axial mass M_{A} = 0.979 and 1.05 GeV are compatible with data from most of the experiments.
ArgoNeuT, a Liquid Argon Time Projection Chamber in the NuMI beamline at Fermilab, has recently collected thousands of neutrino and anti-neutrino events between 0.1 and 10 GeV. The experiment will, among other things, measure the cross section of the neutrino and anti-neutrino Charged Current Quasi-Elastic interaction and analyze the vertex activity associated with such events. These topics are discussed along with ArgoNeuTs automated reconstruction software, currently capable of fully reconstructing the muon and finding the event vertex in neutrino interactions.
The neutrino-induced charged-current quasi-elastic (CCQE, $ u_l+nto l^-+p$ or $bar u_l+pto l^++n$) interaction is the most abundant interaction around 1 GeV, and it is the most fundamental channel to study neutrino oscillations. Recently, MiniBooNE published both muon neutrino and muon anti-neutrino double differential cross sections on carbon. In this review, we describe the details of these analyses and include some historical remarks.