Do you want to publish a course? Click here

The canonical partition function for relativistic hadron gases

119   0   0.0 ( 0 )
 Added by Anton Andronic
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Particle production in high-energy collisions is often addressed within the framework of the thermal (statistical) model. We present a method to calculate the canonical partition function for the hadron resonance gas with exact conservation of the baryon number, strangeness, electric charge, charmness and bottomness. We derive an analytical expression for the partition function which is represented as series of Bessel functions. Our results can be used directly to analyze particle production yields in elementary and in heavy ion collisions. We also quantify the importance of quantum statistics in the calculations of the light particle multiplicities in the canonical thermal model of the hadron resonance gas.



rate research

Read More

346 - Z. Fodor 2007
A spectroscopic method for staggered fermions based on thermodynamical considerations is proposed. The canonical partition functions corresponding to the different quark number sectors are expressed in the low temperature limit as polynomials of the eigenvalues of the reduced fermion matrix. Taking the zero temperature limit yields the masses of the lowest states. The method is successfully applied to the Goldstone pion and both dynamical and quenched results are presented showing good agreement with that of standard spectroscopy. Though in principle the method can be used to obtain the baryon and dibaryon masses, due to their high computational costs such calculations are practically unreachable.
We use techniques in the shuffle algebra to present a formula for the partition function of a one-dimensional log-gas comprised of particles of (possibly) different integer charges at certain inverse temperature $beta$ in terms of the Berezin integral of an associated non-homogeneous alternating tensor. This generalizes previously known results by removing the restriction on the number of species of odd charge. Our methods provide a unified framework extending the de Bruijn integral identities from classical $beta$-ensembles ($beta$ = 1, 2, 4) to multicomponent ensembles, as well as to iterated integrals of more general determinantal integrands.
We compute the partition function and specific heat for a quantum mechanical particle under the influence of a quartic double-well potential non-perturbatively, using the semiclassical method. Near the region of bounded motion in the inverted potential, the usual quadratic approximation fails due to the existence of multiple classical solutions and caustics. Using the tools of catastrophe theory, we identify the relevant classical solutions, showing that at most two have to be considered. This corresponds to the first step towards the study of spontaneous symmetry breaking and thermal phase transitions in the non-perturbative framework of the boundary effective theory.
48 - A. Berkovich , B.M. McCoy 1998
We demonstrate the equality between the universal chiral partition function, which was first found in the context of conformal field theory and Rogers-Ramanujan identities, and the exclusion statistics introduced by Haldane in the study of the fractional quantum Hall effect. The phenomena of multiple representations of the same conformal field theory by different sets of exclusion statistics is discussed in the context of the ${hat u}(1)$ theory of a compactified boson of radius $R.$
We have explained in detail why the canonical partition function of Interacting Self Avoiding Walk (ISAW), is exactly equivalent to the configurational average of the weights associated with growth walks, such as the Interacting Growth Walk (IGW), if the average is taken over the entire genealogical tree of the walk. In this context, we have shown that it is not always possible to factor the the density of states out of the canonical partition function if the local growth rule is temperature-dependent. We have presented Monte Carlo results for IGWs on a diamond lattice in order to demonstrate that the actual set of IGW configurations available for study is temperature-dependent even though the weighted averages lead to the expected thermodynamic behavior of Interacting Self Avoiding Walk (ISAW).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا