No Arabic abstract
A spectroscopic method for staggered fermions based on thermodynamical considerations is proposed. The canonical partition functions corresponding to the different quark number sectors are expressed in the low temperature limit as polynomials of the eigenvalues of the reduced fermion matrix. Taking the zero temperature limit yields the masses of the lowest states. The method is successfully applied to the Goldstone pion and both dynamical and quenched results are presented showing good agreement with that of standard spectroscopy. Though in principle the method can be used to obtain the baryon and dibaryon masses, due to their high computational costs such calculations are practically unreachable.
Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions $Z_n(T)$ are coefficients of this expansion. Using various methods we study properties of $Z_n(T)$. At the last step we perform cubic spline for temperature dependence of $Z_n(T)$ at fixed $n$ and compute baryon number susceptibility $chi_B/T^2$ as function of temperature. After that we compute numerically $partialchi/ partial T$ and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the $16^3 times 4$ lattice with $m_{pi}/m_{rho} = 0.8$ as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line $T_c(mu_B^2)=T_cleft(c-kappa, mu_B^2/T_c^2right)$ with $kappa = -0.0453 pm 0.0099$.
Particle production in high-energy collisions is often addressed within the framework of the thermal (statistical) model. We present a method to calculate the canonical partition function for the hadron resonance gas with exact conservation of the baryon number, strangeness, electric charge, charmness and bottomness. We derive an analytical expression for the partition function which is represented as series of Bessel functions. Our results can be used directly to analyze particle production yields in elementary and in heavy ion collisions. We also quantify the importance of quantum statistics in the calculations of the light particle multiplicities in the canonical thermal model of the hadron resonance gas.
The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because of the bosonic determinant in the partially quenched partition function, the conditions of this theorem are violated allowing for spontaneous symmetry breaking in two dimensions or less. This goes back to work by Niedermaier and Seiler on nonamenable symmetries of the hyperbolic spin chain and earlier work by two of the auhtors on bosonic partition functions at nonzero chemical potential. In this talk we discuss chiral symmetry breaking for the bosonic partition function of QCD at nonzero isospin chemical potential and a bosonic random matrix theory at imaginary chemical potential and compare the results with the fermionic counterpart. In both cases the chiral symmetry group of the bosonic partition function is noncompact.
Lattice QCD has matured to a degree where it is now possible to study excited hadrons as they truly appear in nature, as short-lived resonant enhancements decaying into multiple possible final states. Through variational analysis of matrices of correlation functions computed with large bases of interpolating fields it has proven possible to extract many excited state energy levels, and these can be used to constrain the hadron-hadron scattering amplitudes in which hadron resonances can be observed. Recent progress is illustrated with several examples including coupled-channel scattering in the $pi eta, Koverline{K}$ and $pipi, Koverline{K}, etaeta$ systems in which the $a_0, f_0$ scalar mesons appear.
I review recent results on hadron spectroscopy using lattice QCD. In light of the discoveries in heavy baryon sector at LHCb over the past few years, lattice calculations in this regard are emphasized. Investigations on light baryon, heavy-heavy and heavy-light meson resonances are also discussed.