Do you want to publish a course? Click here

The Density Functional via Effective Action

92   0   0.0 ( 0 )
 Added by Yi-Kuo Yu
 Publication date 2009
  fields Physics
and research's language is English
 Authors Yi-Kuo Yu




Ask ChatGPT about the research

A rigorous derivation of the density functional via the effective action in the Hohenberg-Kohn theory is outlined. Using the auxiliary field method, in which the electric coupling constant $e^2$ need not be small, we show that the loop expansion of the exchange-correlation functional can be reorganized so as to be expressed entirely in terms of the Kohn-Sham single-particle orbitals and energies.



rate research

Read More

124 - Yi-Kuo Yu 2009
A rigorous derivation of the density functional in the Hohenberg-Kohn theory is presented. With no assumption regarding the magnitude of the electric coupling constant $e^2$ (or correlation), this work provides a firm basis for first-principles calculations. Using the auxiliary field method, in which $e^2$ need not be small, we show that the bosonic loop expansion of the exchange-correlation functional can be reorganized so as to be expressed entirely in terms of the Kohn-Sham single-particle orbitals and energies. The excitations of the many-particle system can be obtained within the same formalism. We also explicitly demonstrate at zero-temperature the single-particle limit, the weak-coupling limit of the energy functional, and its application to homogeneous electron gas.
We present a rigorous formulation of generalized Kohn-Sham density-functional theory. This provides a straightforward Kohn-Sham description of many-body systems based not only on particle-density but also on any other observable. We illustrate the formalism for the case of a particle-density based description of a nonrelativistic many-electron system. We obtain a simple diagrammatic expansion of the exchange-correlation functional in terms of Kohn-Sham single-particle orbitals and energies; develop systematic Kohn-Sham formulation for one-electron propagators and many-body excitation energies. This work is ideally suited for practical applications and provides a rigorous basis for a systematic development of the existing body of first-principles calculations in a controllable fashion.
In this work, we propose a self-consistent minimization procedure for functionals in reduced density matrix functional theory. We introduce an effective noninteracting system at finite temperature which is capable of reproducing the groundstate one-reduced density matrix of an interacting system at zero temperature. By introducing the concept of a temperature tensor the minimization with respect to the occupation numbers is shown to be greatly improved.
The universal functional of Hohenberg-Kohn is given as a coupling-constant integral over the density as a functional of the potential. Conditions are derived under which potential-functional approximations are variational. Construction via this method and imposition of these conditions are shown to greatly improve the accuracy of the non-interacting kinetic energy needed for orbital-free Kohn-Sham calculations.
We determine the energy density $xi (3/5) n epsilon_F$ and the gradient correction $lambda hbar^2( abla n)^2/(8m n)$ of the extended Thomas-Fermi (ETF) density functional, where $n$ is number density and $epsilon_F$ is Fermi energy, for a trapped two-components Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. {bf 99}, 233201 (2007)]. In particular we find that $xi=0.455$ and $lambda=0.13$ give the best fit of the DMC data with an even number $N$ of particles. We also study the odd-even splitting $gamma N^{1/9} hbar omega$ of the ground-state energy for the unitary gas in a harmonic trap of frequency $omega$ determining the constant $gamma$. Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا