Do you want to publish a course? Click here

Graded commutative algebras: examples, classification, open problems

152   0   0.0 ( 0 )
 Added by Valentin Ovsienko
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider $G$-graded commutative algebras, where $G$ is an abelian group. Starting from a remarkable example of the classical algebra of quaternions and, more generally, an arbitrary Clifford algebra, we develop a general viewpoint on the subject. We then give a recent classification result and formulate an open problem.



rate research

Read More

We study the notion of $Gamma$-graded commutative algebra for an arbitrary abelian group $Gamma$. The main examples are the Clifford algebras already treated by Albuquerque and Majid. We prove that the Clifford algebras are the only simple finite-dimensional associative graded commutative algebras over $mathbb{R}$ or $mathbb{C}$. Our approach also leads to non-associative graded commutative algebras extending the Clifford algebras.
The Chevalley-Eilenberg differential calculus and differential operators over N-graded commutative rings are constructed. This is a straightforward generalization of the differential calculus over commutative rings, and it is the most general case of the differential calculus over rings that is not the non-commutative geometry. Since any N-graded ring possesses the associated Z_2-graded structure, this also is the case of the graded differential calculus over Grassmann algebras and the supergeometry and field theory on graded manifolds.
117 - G. H. E. Duchamp 2009
This paper provides motivation as well as a method of construction for Hopf algebras, starting from an associative algebra. The dualization technique involved relies heavily on the use of Sweedlers dual.
In this paper, we will consider derived equivalences for differential graded endomorphism algebras by Kellers approaches. First we construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a triangle in the homotopy category of differential graded algebras. We also obtain derived equivalences of differential graded endomorphism algebras from a standard derived equivalence of finite dimensional algebras. Moreover, under some conditions, the cohomology rings of these differential graded endomorphism algebras are also derived equivalent. Then we give an affirmative answer to a problem of Dugas cite{Dugas2015} in some special case.
We find that a compatible graded left-symmetric algebra structure on the Witt algebra induces an indecomposable module of the Witt algebra with 1-dimensional weight spaces by its left multiplication operators. From the classification of such modules of the Witt algebra, the compatible graded left-symmetric algebra structures on the Witt algebra are classified. All of them are simple and they include the examples given by Chapoton and Kupershmidt. Furthermore, we classify the central extensions of these graded left-symmetric algebras which give the compatible graded left-symmetric algebra structures on the Virasoro algebra. They coincide with the examples given by Kupershmidt.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا