Do you want to publish a course? Click here

Cohomology rings, differential graded algebras and derived equivalences

130   0   0.0 ( 0 )
 Added by Shengyong Pan
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we will consider derived equivalences for differential graded endomorphism algebras by Kellers approaches. First we construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a triangle in the homotopy category of differential graded algebras. We also obtain derived equivalences of differential graded endomorphism algebras from a standard derived equivalence of finite dimensional algebras. Moreover, under some conditions, the cohomology rings of these differential graded endomorphism algebras are also derived equivalent. Then we give an affirmative answer to a problem of Dugas cite{Dugas2015} in some special case.



rate research

Read More

Let $Q$ be a finite acyclic valued quiver. We give the high-dimensional cluster multiplication formulas in the quantum cluster algebra of $Q$ with arbitrary coefficients, by applying certain quotients of derived Hall subalgebras of $Q$.
Let $Lambda$ be a finite-dimensional algebra over a fixed algebraically closed field $mathbf{k}$ of arbitrary characteristic, and let $V$ be a finitely generated $Lambda$-module. It follows from results previously obtained by F.M. Bleher and the third author that $V$ has a well-defined versal deformation ring $R(Lambda, V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$. The third author also proved that if $Lambda$ is a Gorenstein $mathbf{k}$-algebra and $V$ is a Cohen-Macaulay $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$, then $R(Lambda, V)$ is universal. In this article we prove that the isomorphism class of a versal deformation ring is preserved under singular equivalence of Morita type between Gorenstein $mathbf{k}$-algebras.
Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a Gorenstein $mathbf{k}$-algebra, and let $V$ be an indecomposable finitely generated non-projective Gorenstein-projective left $Lambda$-module whose stable endomorphism ring is isomorphic to $mathbf{k}$. In this article, we prove that the universal deformation rings $R(Lambda,V)$ and $R(Lambda,Omega_Lambda V)$ are isomorphic, where $Omega_Lambda V$ denotes the first syzygy of $V$ as a left $Lambda$-module. We also prove the following result. Assume that $Gamma$ is another Gorenstein $mathbf{k}$-algebra such that there exists $ell geq 0$ and a pair of bimodules $({_Gamma}X_Lambda, {_Lambda}Y_Gamma)$ that induces a singular equivalence of Morita type with level $ell$ (as introduced by Z. Wang). Then the left $Gamma$-module $Xotimes_Lambda V$ is also Gorenstein-projective and the universal deformation rings $R(Gamma, Xotimes_Lambda V)$ and $R(Lambda, V)$ are isomorphic.
We apply the Auslander-Buchweitz approximation theory to show that the Iyama and Yoshinos subfactor triangulated category can be realized as a triangulated quotient. Applications of this realization go in three directions. Firstly, we recover both a result of Iyama and Yang and a result of the third author. Secondly, we extend the classical Buchweitzs triangle equivalence from Iwanaga-Gorenstein rings to Noetherian rings. Finally, we obtain the converse of Buchweitzs triangle equivalence and a result of Beligiannis, and give characterizations for Iwanaga-Gorenstein rings and Gorenstein algebras
We give three proofs that valuation rings are derived splinters: a geometric proof using the absolute integral closure, a homological proof which reduces the problem to checking that valuation rings are splinters (which is done in the second authors PhD thesis and which we reprise here), and a proof by approximation which reduces the problem to Bhatts proof of the derived direct summand conjecture. The approximation property also shows that smooth algebras over valuation rings are splinters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا