Do you want to publish a course? Click here

Collective deceleration: toward a compact beam dump

72   0   0.0 ( 0 )
 Added by Hui-Chun Wu
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.



rate research

Read More

Heavy ion inertial fusion (HIF) energy would be one of promising energy resources securing our future energy in order to sustain our human life for centuries and beyond. The heavy ion beam (HIB) has remarkable preferable features to release the fusion energy in inertial confinement fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~ 30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1GW of electricity. The HIF reactor operation frequency would be ~10~15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range would be ~0.5-1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. The large density-gradient-scale length helps to reduce the Rayleigh-Taylor (R-T) growth rate. The key merits in HIF physics are presented in the article toward our bright future energy resource.
188 - T. P. Yu , A. Pukhov , G. Shvets 2011
We report stable laser-driven proton beam acceleration from ultrathin foils consisting of two ion species: heavier carbon ions and lighter protons. Multi-dimensional particle-in-cell (PIC) simulations show that the radiation pressure leads to very fast and complete spatial separation of the species. The laser pulse does not penetrate the carbon ion layer, avoiding the proton Rayleigh-Taylor-like (RT) instability. Ultimately, the carbon ions are heated and spread extensively in space. In contrast, protons always ride on the front of the carbon ion cloud, forming a compact high quality bunch. We introduce a simple three-interface model to interpret the instability suppression in the proton layer. The model is backed by simulations of various compound foils such as carbon-deuterium (C-D) and carbon-tritium (C-T) foils. The effects of the carbon ions charge state on proton acceleration are also investigated. It is shown that with the decrease of the carbon ion charge state, both the RT-like instability and the Coulomb explosion degrade the energy spectrum of the protons. Finally, full 3D simulations are performed to demonstrate the robustness of the stable two-ion-species regime.
CERN has launched a study phase to evaluate the feasibility of a new high-intensity beam dump facility at the CERN Super Proton Synchrotron accelerator with the primary goal of exploring Hidden Sector models and searching for Light Dark Matter, but which also offers opportunities for other fixed target flavour physics programs such as rare tau lepton decays and tau neutrino studies. The new facility will require - among other infrastructure - a target complex in which a dense target/dump will be installed, capable of absorbing the entire energy of the beam extracted from the SPS accelerator. In theory, the target/dump could produce very weakly interacting particles, to be investigated by a suite of particle detectors to be located downstream of the target complex. As part of the study, a development design of the target complex has been produced, taking into account the handling and remote handling operations needed through the lifetime of the facility. Two different handling concepts have been studied and both resulting designs are presented.
118 - A. Aimidula , P. Zhang 2018
In the past decades, beam-driven plasma wakefield acceleration (PWFA) experiments have seen remarkable progress by using high-energy particle beams such as electron, positron and proton beams to drive wakes in neutral gas or pre-ionized plasma. This review highlights a few recent experiments in the world to compare experiment parameters and results.
Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy physics. Furthermore the unique femtosecond nature of the source makes it a promising tool for the study of ultra-fast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams, mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens, in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا