Do you want to publish a course? Click here

Low temperature properties of the Electron Spin Resonance in YbRh2Si2

108   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the field and temperature behavior of the narrow Electron Spin Resonance (ESR) response in YbRh2Si2 well below the single ion Kondo temperature. The ESR g factor reflects a Kondo-like field and temperature evolution of the Yb3+ magnetism. Measurements towards low temperatures (>0.5K) have shown distinct crossover anomalies of the ESR parameters upon approaching the regime of a well defined heavy Fermi liquid. Comparison with the field dependence of specific heat and electrical resistivity reveal that the ESR parameters can be related to quasiparticle mass and cross section and, hence, contain inherent heavy electron properties.



rate research

Read More

The thermal conductivity of YbRh2Si2 has been measured down to very low temperatures under field in the basal plane. An additional channel for heat transport appears below 30 mK, both in the antiferromagnetic and paramagnetic states, respectively below and above the critical field suppressing the magnetic order. This excludes antiferromagnetic magnons as the origin of this additional contribution to thermal conductivity. Moreover, this low temperature contribution prevails a definite conclusion on the validity or violation of the Wiedemann-Franz law at the field-induced quantum critical point. At high temperature in the paramagnetic state, the thermal conductivity is sensitive to ferromagnetic fluctuations, previously observed by NMR or neutron scattering and required for the occurrence of the sharp electronic spin resonance fracture.
We study the electron spin resonance (ESR) of low-dimensional spin systems at high temperature, and test the Kubo-Tomita theory of exchange narrowing. In finite-size systems (molecular magnets), we found a double-peak resonance which strongly differs from the usual Lorentzian. For infinite systems, we have predictions for the linewidth and lineshape as a function of the anisotropy strength. For this, we have used an interpolation between a non-perturbative calculation of the memory function at short times (exact diagonalization) and the hydrodynamic spin-diffusion at long times. We show that the Dzyaloshinskii-Moriya anisotropies generally induce a much larger linewidth than the exchange anisotropies in two dimensions, contrary to the one-dimensional case.
We report magnetic and calorimetric measurements down to T = 1 mK on the canonical heavy-electron metal YbRh2Si2. The data reveal the development of nuclear antiferromagnetic order slightly above 2 mK. The latter weakens the primary electronic antiferromagnetism, thereby paving the way for heavy-electron superconductivity below Tc = 2 mK. Our results demonstrate that superconductivity driven by quantum criticality is a general phenomenon.
Quasiparticles of the Heisenberg spin-1/2 chain - spinons - represent the best experimentally accessible example of fractionalized excitations known to date. Dynamic spin response of the spin chain is typically dominated by the broad multi-spinon continuum that often masks subtle features, such as edge singularities, induced by the interaction between spinons. This, however, is not the case in the small momentum region of the magnetized spin chain where strong interaction between spinons leads to {em qualitative} changes to the response. Here we report experimental verification of the recently predicted collective modes of spinons in a model material K$_2$CuSO$_4$Br$_2$ by means of the electron spin resonance (ESR). We exploit the unique feature of the material - the uniform Dzyaloshinskii-Moriya interaction between chains spins - in order to access small momentum regime of the dynamic spin susceptibility. By measuring interaction-induced splitting between the two components of the ESR doublet we directly determine the magnitude of the marginally irrelevant backscattering interaction between spinons for the first time. We find it to be in an excellent agreement with the predictions of the effective field theory. Our results point out an intriguing similarity between the one-dimensional interacting liquid of neutral spinons and the Landau Fermi liquid of electrons.
We present magnetic susceptibility, heat capacity, and neutron diffraction measurements of polycrystalline Nd2Ru2O7 down to 0.4 K. Three anomalies in the magnetic susceptibility measurements at 146, 21 and 1.8 K are associated with an antiferromagnetic ordering of the Ru4+ moments, a weak ferromagnetic signal attributed to a canting of the Ru4+ and Nd3+ moments, and a long-range-ordering of the Nd3+ moments, respectively. The long-range order of the Nd3+ moments was observed in all the measurements, indicating that the ground state of the compound is not a spin glass. The magnetic entropy of Rln2 accumulated up to 5 K, suggests the Nd3+ has a doublet ground state. Lattice distortions accompany the transitions, as revealed by neutron diffraction measurements, and in agreement with earlier synchrotron x-ray studies. The magnetic moment of the Nd3+ ion at 0.4 K is estimated to be 1.54(2){mu}B and the magnetic structure is all-in all-out as determined by our neutron diffraction measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا