Do you want to publish a course? Click here

The accretion of galaxies into groups and clusters

123   0   0.0 ( 0 )
 Added by Sean McGee
 Publication date 2009
  fields Physics
and research's language is English
 Authors Sean L. McGee




Ask ChatGPT about the research

We use the galaxy stellar mass and halo merger tree information from the semi-analytic model galaxy catalogue of Font et al. (2009) to examine the accretion of galaxies into a large sample of groups and clusters, covering a wide range in halo mass (10E12.9 to 10E15.3 Msun/h), and selected from each of four redshift epochs (z=0, 0.5, 1.0 and 1.5). We find that clusters at all examined redshifts have accreted a significant fraction of their final galaxy populations through galaxy groups. A 10E14.5 Msun/h mass cluster at z=0 has, on average, accreted ~ 40% of its galaxies (Mstellar > 10E9 Msun/h) from halos with masses greater than 10E13 Msun/h. Further, the galaxies which are accreted through groups are more massive, on average, than galaxies accreted through smaller halos or from the field population. We find that at a given epoch, the fraction of galaxies accreted from isolated environments is independent of the final cluster or group mass. In contrast, we find that observing a cluster of the same halo mass at each redshift epoch implies different accretion rates of isolated galaxies, from 5-6 % per Gyr at z=0 to 15% per Gyr at z=1.5. We find that combining the existence of a Butcher Oemler effect at z=0.5 and the observations that galaxies within groups display significant environmental effects with galaxy accretion histories justifies striking conclusions. Namely, that the dominant environmental process must begin to occur in halos of 10E12 -- 10E13 Msun/h, and act over timescales of > 2 Gyrs. This argues in favor of a mechanism like strangulation, in which the hot halo of a galaxy is stripped upon infalling into a more massive halo . This simple model predicts that by z=1.5 galaxy groups and clusters will display little to no environmental effects.



rate research

Read More

We examine the dust distribution around a sample of 70,000 low redshift galaxy groups and clusters derived from the Sloan Digital Sky Survey. By correlating spectroscopically identified background quasars with the galaxy groups we obtain the relative colour excess due to dust reddening. We present a significant detection of dust out to a clustercentric distance of 30 Mpc/h in all four independent SDSS colours, consistent with the expectations of weak lensing masses of similar mass halos and excess galaxy counts. The wavelength dependence of this colour excess is consistent with the expectations of a Milky Way dust law with R_V=3.1. Further, we find that the halo mass dependence of the dust content is much smaller than would be expected by a simple scaling, implying that the dust-to-gas ratio of the most massive clusters (~10E14 Msun/h) is ~3% of the local ISM value, while in small groups (~10E12.7 Msun/h) it is ~55% of the local ISM value. We also find that the dust must have a covering fraction on the order of 10% to explain the observed color differences, which means the dust is not just confined to the most massive galaxies. Comparing the dust profile with the excess galaxy profile, we find that the implied dust-to-galaxy ratio falls significantly towards the group or cluster center. This has a significant halo mass dependence, such that the more massive groups and clusters show a stronger reduction. This suggests that either dust is destroyed by thermal sputtering of the dust grains by the hot, dense gas or the intrinsic dust production is reduced in these galaxies.
We present a new catalogue of 55,121 groups and clusters centred on Luminous Red Galaxies from SDSS DR7 in the redshift range 0.15<z<0.4. We provide halo mass estimates for each of these groups derived from a calibration between the optical richness of bright galaxies (M_r<-20.5) within 1 Mpc, and X-ray-derived mass for a small subset of 129 groups and clusters with X-ray measurements. We derive the mean (stacked) surface number density profiles of galaxies as a function of total halo mass in different mass bins. We find that derived profiles can be well-described by a projected NFW profile with a concentration parameter (<c>~2.6) that is approximately a factor of two lower than that of the dark matter (as predicted by N-body cosmological simulations) and nearly independent of halo mass. Interestingly, in spite of the difference in shape between the galaxy and dark matter radial distributions, both exhibit a high degree of self-similarity. A self-consistent comparison to several recent semi-analytic models of galaxy formation indicates that: (1) beyond ~0.3 r_500 current models are able to reproduce both the shape and normalisation of the satellite profiles; and (2) within ~0.3 r_500 the predicted profiles are sensitive to the details of the satellite-BCG merger timescale calculation. The former is a direct result of the models being tuned to match the global galaxy luminosity function combined with the assumption that the satellite galaxies do not suffer significant tidal stripping, even though their surrounding dark matter haloes can be removed through this process. Combining our results with measurements of the intracluster light should provide a way to inform theoretical models on the efficacy of the tidal stripping and merging processes.
Matter distribution around clusters is highly anisotropic from their being the nodes of the cosmic web. Clusters shape and the number of filaments they are connected to, i.e., their connectivity, should reflect their level of anisotropic matter distribution and must be, in principle, related to their physical properties. We investigate the influence of the dynamical state and the formation history on both the morphology and local connectivity of about 2400 groups and clusters of galaxies from the large hydrodynamical simulation IllustrisTNG at z=0. We find that the mass of groups and clusters mainly influences the geometry of the matter distribution: massive halos are significantly more elliptical, and more connected to the cosmic web than low-mass ones. Beyond the mass-driven effect, ellipticity and connectivity are correlated and are imprints of the growth rate of groups and clusters. Both anisotropy measures appear to trace different dynamical states, such that unrelaxed groups and clusters are more elliptical and more connected than relaxed ones. This relation between matter anisotropies and dynamical state is the sign of different accretion histories. Relaxed groups and clusters are mostly formed long time ago, and slowly accreting matter at the present time. They are rather spherical and weakly connected to their environment, mostly because they had enough time to relax and, hence, lost the connection with their preferential directions of accretion and merging. In contrast, late-formed unrelaxed objects are highly anisotropic with large connectivities and ellipticities. These groups and clusters are in formation phase and must be strongly affected by the infalling of materials from filaments.
(Abridged) Based on XMM-Newton, Chandra and SDSS data, we investigate the baryon distribution in groups and clusters and its use as a cosmological constraint. For this, we considered a sample of 123 systems, with total masses in the mass range M500 = ~ 10^13 - 4 x 10^15 h_70^-1 Msun. The gas masses and total masses are derived from X-ray data under the assumption of hydrostatic equilibrium and spherical symmetry. The stellar masses are based on SDSS-DR8 data. For the 37 systems out of 123 that had both optical and X-ray data available, we investigated the gas, stellar and total baryon mass fractions inside r2500 and r500, and the differential gas mass fraction within the spherical annulus between r2500 and r500, as a function of total mass. For the other objects, we investigated the gas mass fraction only. We find that the gas mass fraction inside r2500 and r500 depends on the total mass. However, the differential gas mass fraction does not show any dependence on total mass for systems with M500 > 10^14 Msun. We find that the total baryonic content increases with cluster mass. This led us to investigate the contribution of the ICL to the total baryon budget for lower mass systems, but we find that it cannot account for the difference observed. The gas mass fraction dependence on total mass observed for groups and clusters could be due to the difficulty of low-mass systems to retain gas inside the inner region. Due to their shallower potential well, non-thermal processes are more effective in expelling the gas from their central regions outwards. Since the differential gas mass fraction is nearly constant it provides better constraints for cosmology. Using our total f_b estimates, our results imply 0.17 < Omega_m < 0.55.
We present the results of a search for galaxy clusters in Subaru-XMM Deep Field. We reach a depth for a total cluster flux in the 0.5-2 keV band of 2x10^{-15} ergs cm^{-2} s^{-1} over one of the widest XMM-Newton contiguous raster surveys, covering an area of 1.3 square degrees. Cluster candidates are identified through a wavelet detection of extended X-ray emission. The red sequence technique allows us to identify 57 cluster candidates. We report on the progress with the cluster spectroscopic follow-up and derive their properties based on the X-ray luminosity and cluster scaling relations. In addition, 3 sources are identified as X-ray counterparts of radio lobes, and in 3 further sources, X-ray counterpart of radio lobes provides a significant fraction of the total flux of the source. In the area covered by NIR data, our identification success rate achieves 86%. We detect a number of radio galaxies within our groups and for a luminosity-limited sample of radio galaxies we compute halo occupation statistics using a marked cluster mass function. We compare the cluster detection statistics in the SXDF with the predictions of concordance cosmology and current knowledge of the X-ray cluster properties, concluding that a reduction of concordance sigma_8 value by 5% is required in order to match the prediction of the model and the data. This conclusion still needs verification through the completion of cluster follow-up.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا