Do you want to publish a course? Click here

Resistivity noise in crystalline magnetic nanowires and its implications to domain formation and kinetics

175   0   0.0 ( 0 )
 Added by Amrita Singh
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the time-dependent fluctuations in electrical resistance, or noise, in high quality crystalline magnetic nanowires within nanoporous templates. The noise increases exponentially with increasing temperature and magnetic field, and has been analyzed in terms of domain wall depinning within the Neel-Brown framework. The frequency-dependence of noise also indicates a crossover from nondiffusive kinetics to long-range diffusion at higher temperatures, as well as a strong collective depinning, which need to be considered when implementing these nanowires in magnetoelectronic devices.



rate research

Read More

A self-consistent analytical solution of the multi-subband Boltzmann transport equation with collision term describing grain boundary and surface roughness scattering is presented to study the resistivity scaling in metal nanowires. The different scattering mechanisms and the influence of their statistical parameters are analyzed. Instead of a simple power law relating the height or width of a nanowire to its resistivity, the picture appears to be more complicated due to quantum-mechanical scattering and quantization effects, especially for surface roughness scattering.
147 - Voicu O. Dolocan 2013
We study the formation and control of metastable states of pairs of domain walls in cylindrical nanowires of small diameter where the transverse walls are the lower energy state. We show that these pairs form bound states under certain conditions, with a lifetime as long as 200ns, and are stabilized by the influence of a spin polarized current. Their stability is analyzed with a model based on the magnetostatic interaction and by 3D micromagnetic simulations. The apparition of bound states could hinder the operation of devices.
127 - A. Pivano , V. O. Dolocan 2016
The nonlinear dynamics of a transverse domain wall (TDW) in Permalloy and Nickel nanostrips with two artificially patterned pinning centers is studied numerically up to rf frequencies. The phase diagram frequency - driving amplitude shows a rich variety of dynamical behaviors depending on the material parameters and the type and shape of pinning centers. We find that T-shaped traps (antinotches) create a classical double well Duffing potential that leads to a small chaotic region in the case of Nickel and a large one for Py. In contrast, the rectangular constrictions (notches) create an exponential potential that leads to larger chaotic regions interspersed with periodic windows for both Py and Ni. The influence of temperature manifests itself by enlarging the chaotic region and activating thermal jumps between the pinning sites while reducing the depinning field at low frequency in the notched strips.
A modeling approach, based on an analytical solution of the semiclassical multi-subband Boltzmann transport equation, is presented to study resistivity scaling in metallic thin films and nanowires due to grain boundary and surface roughness scattering. While taking into account the detailed statistical properties of grains, roughness and barrier material as well as the metallic band structure and quantum mechanical aspects of scattering and confinement, the model does not rely on phenomenological fitting parameters.
113 - David Ferrand , Joel Cibert 2014
The strain configuration induced by the lattice mismatch in a core-shell nanowire is calculated analytically, taking into account the crystal anisotropy and the difference in stiffness constants of the two materials. The method is applied to nanowires with the wurtzite structure or the zinc-blende structure with the hexagonal / trigonal axis along the nanowire, and the results are compared to available numerical calculations and experimental data. It is also applied to multishell nanowires, and to core-shell nanowires grown along the $<001>$ axis of cubic semiconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا