Do you want to publish a course? Click here

Metastable domain wall dynamics in magnetic nanowires

155   0   0.0 ( 0 )
 Added by Voicu Dolocan O.
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the formation and control of metastable states of pairs of domain walls in cylindrical nanowires of small diameter where the transverse walls are the lower energy state. We show that these pairs form bound states under certain conditions, with a lifetime as long as 200ns, and are stabilized by the influence of a spin polarized current. Their stability is analyzed with a model based on the magnetostatic interaction and by 3D micromagnetic simulations. The apparition of bound states could hinder the operation of devices.



rate research

Read More

It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor N{e}el over Bloch type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) has not yet been explored. We present a combination of analytical and micromagnetic calculations to describe a new type of topological excitation called a DW Skyrmion characterized by a $360^circ$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW Skyrmions experimentally using Fresnel mode Lorentz TEM; simulated images of DW Skyrmions using this technique are presented based on the micromagnetic results.
127 - A. Pivano , V. O. Dolocan 2016
The nonlinear dynamics of a transverse domain wall (TDW) in Permalloy and Nickel nanostrips with two artificially patterned pinning centers is studied numerically up to rf frequencies. The phase diagram frequency - driving amplitude shows a rich variety of dynamical behaviors depending on the material parameters and the type and shape of pinning centers. We find that T-shaped traps (antinotches) create a classical double well Duffing potential that leads to a small chaotic region in the case of Nickel and a large one for Py. In contrast, the rectangular constrictions (notches) create an exponential potential that leads to larger chaotic regions interspersed with periodic windows for both Py and Ni. The influence of temperature manifests itself by enlarging the chaotic region and activating thermal jumps between the pinning sites while reducing the depinning field at low frequency in the notched strips.
Cylindrical nanowires made of soft magnetic materials, in contrast to thin strips, may host domain walls of two distinct topologies. Unexpectedly, we evidence experimentally the dynamic transformation of topology upon wall motion above a field threshold. Micromagnetic simulations highlight the underlying precessional dynamics for one way of the transformation, involving the nucleation of a Bloch-point singularity, however, fail to reproduce the reverse process. This rare discrepancy between micromagnetic simulations and experiments raises fascinating questions in material and computer science.
The pinning effect of the periodic diameter modulations on the domain wall propagation in FeCoCu individual nanowires is determined by Magnetic Force Microscopy, MFM. A main bistable magnetic configuration is firstly concluded from MFM images characterized by the spin reversal between two nearly single domain states with opposite axial magnetization. Complementary micromagnetic simulations confirm a vortex mediated magnetization reversal process. A refined MFM imaging procedure under variable applied field allows us to observe metastable magnetic states where the propagating domain wall is pinned at certain positions with enlarged diameter. Moreover, it is demonstrated that in some atypical nanowires with higher coercive field it is possible to control the position of the pinned domain walls by an external magnetic field.
We investigate the magnetization dynamics in circular Permalloy dots with spatially separated magnetic vortices interconnected by domain walls (double vortex state). We identify a novel type of quasi one-dimensional (1D) localised spin wave modes confined along domain walls, connecting each of two vortex cores with two edge half-antivortices. Variation of the mode eigenfrequencies with the dot size is in quantitative agreement with the developed model, which considers a dipolar origin of the localized 1D spin waves or so-called Winters magnons [J.M. Winter, Phys.Rev. 124, 452 (1961)]. These spin waves are analogous to the displacement waves of strings, and could be excited in a wide class of patterned magnetic nanostructures possessing domain walls, namely in triangular, square, circular or elliptic magnetic dots.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا