Do you want to publish a course? Click here

Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry

227   0   0.0 ( 0 )
 Added by Lucian Constantin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Semilocal density functionals for the exchange-correlation energy are needed for large electronic systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized gradient approximation (meta-GGA) is semilocal and usefully accurate, but predicts too-long lattice constants. Recent GGAs for solids yield good lattice constants but poor atomization energies of molecules. We show that the construction principle for one of them (restoring the density gradient expansion for exchange over a wide range of densities) can be used to construct a revised TPSS meta-GGA with accurate lattice constants, surface energies, and atomization energies for ordinary matter.



rate research

Read More

195 - J. P. Coe 2019
We propose a lattice density-functional theory for {it ab initio} quantum chemistry or physics as a route to an efficient approach that approximates the full configuration interaction energy and orbital occupations for molecules with strongly-correlated electrons. We build on lattice density-functional theory for the Hubbard model by deriving Kohn-Sham equations for a reduced then full quantum chemistry Hamiltonian, and demonstrate the method on the potential energy curves for the challenging problem of modelling elongating bonds in a linear chain of six hydrogen atoms. Here the accuracy of the Bethe-ansatz local-density approximation is tested for this quantum chemistry system and we find that, despite this approximate functional being designed for the Hubbard model, the shapes of the potential curves generally agree with the full configuration interaction results. Although there is a discrepancy for very stretched bonds, this is lower than when using standard density-functional theory with the local-density approximation.
Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory accuracy for different solid-state systems, whereas semilocal approximations are generally regarded as unfit to this aim. Here, we show that instead properly constructed semilocal approximations, the Pauli-Gaussian (PG) KE functionals, especially at the Laplacian-level of theory, can indeed achieve similar accuracy as non-local functionals and can be accurate for both metals and semiconductors, without the need of system-dependent parameters.
The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture, and is central to modern electronic structure theory. It also underpins the computation and interpretation of experimentally observable material properties such as optical absorption and electrical conductivity. We discuss the challenges inherent in the construction of a machine-learning (ML) framework aimed at predicting the DOS as a combination of local contributions that depend in turn on the geometric configuration of neighbours around each atom, using quasiparticle energy levels from density functional theory as training data. We present a challenging case study that includes configurations of silicon spanning a broad set of thermodynamic conditions, ranging from bulk structures to clusters, and from semiconducting to metallic behavior. We compare different approaches to represent the DOS, and the accuracy of predicting quantities such as the Fermi level, the DOS at the Fermi level, or the band energy, either directly or as a side-product of the evaluation of the DOS. The performance of the model depends crucially on the smoothening of the DOS, and there is a tradeoff to be made between the systematic error associated with the smoothening and the error in the ML model for a specific structure. We demonstrate the usefulness of this approach by computing the density of states of a large amorphous silicon sample, for which it would be prohibitively expensive to compute the DOS by direct electronic structure calculations, and show how the atom-centred decomposition of the DOS that is obtained through our model can be used to extract physical insights into the connections between structural and electronic features.
Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the non-locality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the image-like surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to the ones at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.
A quantitative and predictive theory of quantum light-matter interactions in ultra thin materials involves several fundamental challenges. Any realistic model must simultaneously account for the ultra-confined plasmonic modes and their quantization in the presence of losses, while describing the electronic states from first principles. Herein we develop such a framework by combining density functional theory (DFT) with macroscopic quantum electrodynamics, which we use to show Purcell enhancements reaching $10^7$ for intersubband transitions in few-layer transition metal dichalcogenides sandwiched between graphene and a perfect conductor. The general validity of our methodology allows us to put several common approximation paradigms to quantitative test, namely the dipole-approximation, the use of 1D quantum well model wave functions, and the Fermis Golden rule. The analysis shows that the choice of wave functions is of particular importance. Our work lays the foundation for practical ab initio-based quantum treatments of light matter interactions in realistic nanostructured materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا