Do you want to publish a course? Click here

Semilocal Pauli-Gaussian Kinetic Functionals for Orbital-Free Density Functional Theory Calculations of Solids

126   0   0.0 ( 0 )
 Added by Eduardo Fabiano
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory accuracy for different solid-state systems, whereas semilocal approximations are generally regarded as unfit to this aim. Here, we show that instead properly constructed semilocal approximations, the Pauli-Gaussian (PG) KE functionals, especially at the Laplacian-level of theory, can indeed achieve similar accuracy as non-local functionals and can be accurate for both metals and semiconductors, without the need of system-dependent parameters.



rate research

Read More

A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed that the deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density by an approximate orbital-free expression) applied to exchange-correlation functionals of the meta-generalized gradient approximation (MGGA) can lead to important changes in the results for molecular properties. For the present work, the deorbitalization of MGGA functionals is further investigated by considering various properties of solids. It is shown that depending on the MGGA, common orbital-free approximations to the kinetic-energy density can be sufficiently accurate for the lattice constant, bulk modulus, and cohesive energy. For the band gap, calculated with the modified Becke-Johnson MGGA potential, the deorbitalization has a larger impact on the results.
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO$_2$ $alpha$-quartz and stishovite, ZrSiO$_4$ zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for $alpha$-quartz. For the vibrational and thermodynamical properties, LDA performs surprisingly very good. In the majority of the test cases, it outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin (and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the oscillator strengths (and hence the static dielectric constant).
Time-dependent orbital-free density functional theory (TD-OFDFT) is an efficient ab-initio method for calculating the electronic dynamics of large systems. In comparison to standard TD-DFT, it computes only a single electronic state regardless of system size, but it requires an additional time-dependent Pauli potential term. We propose a nonadiabatic and nonlocal Pauli potential whose main ingredients are the time-dependent particle and current densities. Our calculations of the optical spectra of metallic and semiconductor clusters indicate that nonlocal and nonadiabatic TD-OFDFT performs accurately for metallic systems and semiquantitatively for semiconductors. This work opens the door to wide applicability of TD-OFDFT for nonequilibrium electron and electron-nuclear dynamics of materials.
Time-dependent orbital-free DFT is an efficient method for calculating the dynamic properties of large scale quantum systems due to the low computational cost compared to standard time-dependent DFT. We formalize this method by mapping the real system of interacting fermions onto a fictitious system of non-interacting bosons. The dynamic Pauli potential and associated kernel emerge as key ingredients of time-tependent orbital-free DFT. Using the uniform electron gas as a model system, we derive an approximate frequency-dependent Pauli kernel. Pilot calculations suggest that space nonlocality is a key feature for this kernel. Nonlocal terms arise already in the second order expansion with respect to unitless frequency and reciprocal space variable ($frac{omega}{q, k_F}$ and $frac{q}{2, k_F}$, respectively). Given the encouraging performance of the proposed kernel, we expect it will lead to more accurate orbital-free DFT simulations of nanoscale systems out of equilibrium. Additionally, the proposed path to formulate nonadiabatic Pauli kernels presents several avenues for further improvements which can be exploited in future works to improve the results.
Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the non-locality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the image-like surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to the ones at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا