Do you want to publish a course? Click here

Cosmic-ray origin in OB associations and preferential acceleration of refractory elements: Evidence from abundances of elements 26Fe through 34Se

246   0   0.0 ( 0 )
 Added by Martin Israel
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report abundances of elements from 26Fe to 34Se in the cosmic radiation measured during fifty days of exposure of the Trans-Iron Galactic Element Recorder (TIGER) balloon-borne instrument. These observations add support to the concept that the bulk of cosmic-ray acceleration takes place in OB associations, and they further support cosmic-ray acceleration models in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.



rate research

Read More

We report abundances of elements from $_{26}$Fe to $_{40}$Zr in the cosmic radiation measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. These observations resolve elemental abundances in this charge range with single-element resolution and good statistics. These results support a model of cosmic-ray origin in which the source material consists of a mixture of 19$^{+11}_{-6}$% material from massive stars and $sim$81% normal interstellar medium (ISM) material with solar system abundances. The results also show a preferential acceleration of refractory elements (found in interstellar dust grains) by a factor of $sim$4 over volatile elements (found in interstellar gas) ordered by atomic mass (A). Both the refractory and volatile elements show a mass-dependent enhancement with similar slopes.
The origin of many elements of the periodic table remains an unsolved problem. While many nucleosynthetic channels are broadly understood, significant uncertainties remain regarding certain groups of elements such as the intermediate and rapid neutron-capture processes, the p-process, or the origin of odd-Z elements in the most metal-poor stars. Canada has a long tradition of leadership in nuclear astrophysics, dating back to the work of Alastair Cameron in the 1950s. Recent faculty hires have further boosted activity in the field, including transient observation and theory, survey science on galactic nucleosynthesis, and nuclear experiments. This white paper contains a brief overview of recent activity in the community, highlighting strengths in each sub-field, and provides recommendations to improve interdisciplinary collaboration. Sustaining Canadian leadership in the next decade will require, on the observational side, access to transient and non-transient surveys like LSST, SKA, or MSE, support for target-of-opportunity observing in current and future Canadian telescopes, and participation in next-generation X-ray telescopes such as ATHENA. State-of-the-art theoretical predictions will require an ambitious succession plan for the Niagara supercomputer to support large parallel jobs. We propose a funding instrument for postdoctoral training that reflects the interdisciplinary nature of nuclear astrophysics research, and the creation of a national collaborative funding program that allows for joint projects and workshop organization.
53 - G. Gilli 2005
This work presents a uniform and homogeneous study of chemical abundances of refractory elements in 101 stars with and 94 without known planetary companions. We carry out an in-depth investigation of the abundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The new comparison sample, spanning the metallicity range -0.70< [Fe/H]< 0.50, fills the gap that previously existed, mainly at high metallicities, in the number of stars without known planets. We used an enlarged set of data including new observations, especially for the field ``single comparison stars. The line list previously studied by other authors was improved: on average we analysed 90 spectral lines in every spectrum and carefully measured more than 16600 equivalent widths (EW) to calculate the abundances. We investigate possible differences between the chemical abundances of the two groups of stars, both with and without planets. The results are globally comparable to those obtained by other authors, and in most cases the abundance trends of planet-host stars are very similar to those of the comparison sample. This work represents a step towards the comprehension of recently discovered planetary systems. These results could also be useful for verifying galactic models at high metallicities and consequently improve our knowledge of stellar nucleosynthesis and galactic chemical evolution.
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their luminous massive stars, though their low-mass members have not been well studied until the last couple of decades. This has changed thanks to data from X-ray observations, spectroscopic surveys and astrometry from Gaia that allows their full stellar content to be identified and their dynamics to be studied, which in turn is leading to changes in our understanding of these systems and their origins, with the old picture of Blaauw (1964) now being superseded. It is clear now that OB associations have considerably more substructure than once envisioned, both spatially, kinematically and temporally. These changes have implications for the star formation process, the formation and evolution of planetary systems, and the build-up of stellar populations across galaxies.
Low-energy cosmic rays, in particular protons with energies below 1 GeV, are significant drivers of the thermochemistry of molecular clouds. However, these cosmic rays are also greatly impacted by energy losses and magnetic field transport effects in molecular gas. Explaining cosmic ray ionization rates of $10^{-16}$ s$^{-1}$ or greater in dense gas requires either a high external cosmic ray flux, or local sources of MeV-GeV cosmic ray protons. We present a new local source of low-energy cosmic rays in molecular clouds: first order Fermi-acceleration of protons in regions undergoing turbulent reconnection in molecular clouds. We show from energetic-based arguments there is sufficient energy within the magneto-hydrodynamic turbulent cascade to produce ionization rates compatible with inferred ionization rates in molecular clouds. As turbulent reconnection is a volume-filling process, the proposed mechanism can produce a near-homogeneous distribution of low-energy cosmic rays within molecular clouds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا