Do you want to publish a course? Click here

LRP2020: The cosmic origin and evolution of the elements

74   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of many elements of the periodic table remains an unsolved problem. While many nucleosynthetic channels are broadly understood, significant uncertainties remain regarding certain groups of elements such as the intermediate and rapid neutron-capture processes, the p-process, or the origin of odd-Z elements in the most metal-poor stars. Canada has a long tradition of leadership in nuclear astrophysics, dating back to the work of Alastair Cameron in the 1950s. Recent faculty hires have further boosted activity in the field, including transient observation and theory, survey science on galactic nucleosynthesis, and nuclear experiments. This white paper contains a brief overview of recent activity in the community, highlighting strengths in each sub-field, and provides recommendations to improve interdisciplinary collaboration. Sustaining Canadian leadership in the next decade will require, on the observational side, access to transient and non-transient surveys like LSST, SKA, or MSE, support for target-of-opportunity observing in current and future Canadian telescopes, and participation in next-generation X-ray telescopes such as ATHENA. State-of-the-art theoretical predictions will require an ambitious succession plan for the Niagara supercomputer to support large parallel jobs. We propose a funding instrument for postdoctoral training that reflects the interdisciplinary nature of nuclear astrophysics research, and the creation of a national collaborative funding program that allows for joint projects and workshop organization.



rate research

Read More

The next generation of electromagnetic and gravitational wave observatories will open unprecedented windows to the birth of the first supermassive black holes. This has the potential to reveal their origin and growth in the first billion years, as well as the signatures of their formation history in the local Universe. With this in mind, we outline three key focus areas which will shape research in the next decade and beyond: (1) What were the seeds of the first quasars; how did some reach a billion solar masses before z$sim7$? (2) How does black hole growth change over cosmic time, and how did the early growth of black holes shape their host galaxies? What can we learn from intermediate mass black holes (IMBHs) and dwarf galaxies today? (3) Can we unravel the physics of black hole accretion, understanding both inflows and outflows (jets and winds) in the context of the theory of general relativity? Is it valid to use these insights to scale between stellar and supermassive BHs, i.e., is black hole accretion really scale invariant? In the following, we identify opportunities for the Canadian astronomical community to play a leading role in addressing these issues, in particular by leveraging our strong involvement in the Event Horizon Telescope, the {it James Webb Space Telescope} (JWST), Euclid, the Maunakea Spectroscopic Explorer (MSE), the Thirty Meter Telescope (TMT), the Square Kilometer Array (SKA), the Cosmological Advanced Survey Telescope for Optical and ultraviolet Research (CASTOR), and more. We also discuss synergies with future space-based gravitational wave (LISA) and X-ray (e.g., Athena, Lynx) observatories, as well as the necessity for collaboration with the stellar and galactic evolution communities to build a complete picture of the birth of supermassive black holes, and their growth and their influence over the history of the Universe.
ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z=10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z ~ 0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs.
Spitzer observations of SN 1987A have now spanned more than a decade. Since day ~4,000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6,000 to 8,000 days after the explosion, Spitzer observations included broadband photometry at 3.6 - 24 micron, and low and moderate resolution spectroscopy at 5 - 35 micron. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 micron. These data show that the 3.6 and 4.5 micron brightness has clearly begun to fade after day ~8,500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on time scales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8,000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe II] and [Si II] lines show different, peculiar velocity structures.
We present and analyse an extensive dataset of the superluminous supernova (SLSN) LSQ14mo (z = 0.256), consisting of a multi-colour lightcurve from -30 d to +70 d in the rest-frame and a series of 6 spectra from PESSTO covering -7 d to +50 d. This is among the densest spectroscopic coverage, and best-constrained rising lightcurve, for a fast-declining hydrogen-poor SLSN. The bolometric lightcurve can be reproduced with a millisecond magnetar model with ~ 4 M_sol ejecta mass, and the temperature and velocity evolution is also suggestive of a magnetar as the power source. Spectral modelling indicates that the SN ejected ~ 6 M_sol of CO-rich material with a kinetic energy of ~ 7 x 10^51 erg, and suggests a partially thermalised additional source of luminosity between -2 d and +22 d. This may be due to interaction with a shell of material originating from pre-explosion mass loss. We further present a detailed analysis of the host galaxy system of LSQ14mo. PESSTO and GROND imaging show three spatially resolved bright regions, and we used the VLT and FORS2 to obtain a deep (five-hour exposure) spectra of the SN position and the three star-forming regions, which are at a similar redshift. The FORS spectrum at +300 days shows no trace of SN emission lines and we place limits on the strength of [O I] from comparisons with other Ic SNe. The deep spectra provides a unique chance to investigate spatial variations in the host star-formation activity and metallicity. The specific star-formation rate is similar in all three components, as is the presence of a young stellar population. However, the position of LSQ14mo exhibits a lower metallicity, with 12 + log(O/H) = 8.2 in both the R23 and N2 scales (corresponding to ~ 0.3 Z_sol). We propose that the three bright regions in the host system are interacting, which thus triggers star-formation and forms young stellar populations.
The problem of the origin of the elements is a fundamental one in astronomy and one that has many open questions. Prominent examples include (1) the nature of Type Ia supernovae and the timescale of their contributions; (2) the observational identification of elements such as titanium and potassium with the $alpha$-elements in conflict with core-collapse supernova predictions; (3) the number and relative importance of r-process sites; (4) the origin of carbon and nitrogen and the influence of mixing and mass loss in winds; and (5) the origin of the intermediate elements, such as Cu, Ge, As, and Se, that bridge the region between charged-particle and neutron-capture reactions. The next decade will bring to maturity many of the new tools that have recently made their mark, such as large-scale chemical cartography of the Milky Way and its satellites, the addition of astrometric and asteroseismic information, the detection and characterization of gravitational wave events, 3-D simulations of convection and model atmospheres, and improved laboratory measurements for transition probabilities and nuclear masses. All of these areas are key for continued improvement, and such improvement will benefit many areas of astrophysics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا