Do you want to publish a course? Click here

A glimpse of the end of the dark ages: the gamma-ray burst of 23 April 2009 at redshift 8.3

180   0   0.0 ( 0 )
 Added by Nial R. Tanvir
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.



rate research

Read More

M87 is a nearby radio galaxy that is detected at energies ranging from radio to VHE gamma-rays. Its proximity and its jet, misaligned from our line-of-sight, enable detailed morphological studies and extensive modeling at radio, optical, and X-ray energies. Flaring activity was observed at all energies, and multi-wavelength correlations would help clarify the origin of the VHE emission. In this paper, we describe a detailed temporal and spectral analysis of the VERITAS VHE gamma-ray observations of M87 in 2008 and 2009. In the 2008 observing season, VERITAS detected an excess with a statistical significance of 7.2 sigma from M87 during a joint multi-wavelength monitoring campaign conducted by three major VHE experiments along with the Chandra X-ray Observatory. In February 2008, VERITAS observed a VHE flare from M87 occurring over a 4-day timespan. The peak nightly flux above 250GeV was 7.7% of the Crab Nebula flux. M87 was marginally detected before this 4-day flare period, and was not detected afterwards. Spectral analysis of the VERITAS observations showed no significant change in the photon index between the flare and pre-flare states. Shortly after the VHE flare seen by VERITAS, the Chandra X-ray Observatory detected the flux from the core of M87 at a historical maximum, while the flux from the nearby knot HST-1 remained quiescent. Acciari et al. (2009) presented the 2008 contemporaneous VHE gamma-ray, Chandra X-ray, and VLBA radio observations which suggest the core as the most likely source of VHE emission, in contrast to the 2005 VHE flare that was simultaneous with an X-ray flare in the HST-1 knot. In 2009, VERITAS continued its monitoring of M87 and marginally detected a 4.2 sigma excess corresponding to a flux of ~1% of the Crab Nebula. No VHE flaring activity was observed in 2009.
151 - M. Trenti Cambridge 2013
Gamma Ray Bursts (GRBs) and galaxies at high redshift represent complementary probes of the star formation history of the Universe. In fact, both the GRB rate and the galaxy luminosity density are connected to the underlying star formation. Here, we combine a star formation model for the evolution of the galaxy luminosity function from z=0 to z=10 with a metallicity-dependent efficiency for GRB formation to simultaneously predict the comoving GRB rate. Our model sheds light on the physical origin of the empirical relation often assumed between GRB rate and luminosity density-derived star formation rate: Rgrb(z) = epsilon(z)*SFR_{obs}(z), with epsilon(z) (1+z)^{1.2}. At z<4, epsilon(z) is dominated by the effects of metallicity evolution in the GRB efficiency. Our best-fitting model only requires a moderate preference for low-metallicity, that is a GRB rate per unit stellar mass about four times higher for log(Z/Zsun)<-3 compared to log(Z/Zsun)>0. Models with total suppression of GRB formation at log(Z/Zsun)>0 are disfavored. At z>4, most of the star formation happens in low-metallicity hosts with nearly saturated efficiency of GRB production per unit stellar mass. However at the same epoch, galaxy surveys miss an increasing fraction of the predicted luminosity density because of flux limits, driving an accelerated evolution of epsilon(z) compared to the empirical power-law fit from lower z. Our findings are consistent with the non-detections of GRB hosts in ultradeep imaging at z>5, and point toward current galaxy surveys at z>8 only observing the top 15-20 % of the total luminosity density.
We present a characterization of the close environment of GRB980425 based on 5-160mic spectro-imaging obtained with Spitzer. The Gamma-Ray Burst GRB980425 occurred in a nearby (z=0.0085) SBc-type dwarf galaxy, at a projected distance of 900pc from an HII region with strong signatures of Wolf-Rayet (WR) stars. While this WR region produces less than 5% of the B-band emission of the host, we find that it is responsible for 45+/-10% of the total infrared luminosity, with a maximum contribution reaching 75% at 25-30mic. This atypical property is rarely observed among morphologically-relaxed dwarves, suggesting a strong causal link with the GRB event. The luminosity of the WR region (L_8-1000mic=4.6x10^8 Lsol), the peak of its spectral energy distribution at <~100mic and the presence of highly-ionized emission lines (e.g., [NeIII]) also reveal extremely young (<5Myr) star-forming activity, with a typical time-scale of only 47Myr to double the stellar mass already built. Finally, the mid-IR over B-band luminosity ratio in this region is substantially higher than in star-forming galaxies with similar L_IR, but it is lower than in young dust-enshrouded stellar clusters. Considering the modest obscuration measured from the silicate features (tau_9.7mic ~ 0.015), this suggests that the WR region is dominated by one or several star clusters that have either partly escaped or cleared out their parent molecular cloud. Combined with the properties characterizing the whole population of GRB hosts, our results reinforce the idea that long GRBs mostly happen within or in the vicinity of relatively unobscured galactic regions harboring very recent star formation.
142 - S. Savaglio 2012
Due to their extreme luminosities, gamma-ray bursts (GRBs) can be detected in hostile regions of galaxies, nearby and at very high redshift, making them important cosmological probes. The investigation of galaxies hosting long-duration GRBs (whose progenitor is a massive star) demonstrated their connection to star formation. Still, the link to the total galaxy population is controversial, mainly because of the small-number statistics: ~ 1,100 are the GRBs detected so far, ~ 280 those with measured redshift, and ~ 70 the hosts studied in detail. These are typically low-redshift (z < 1.5), low luminosity, metal poor, and star-forming galaxes. On the other hand, at 1.5< z <4, massive, metal rich and dusty, interacting galaxies are not uncommon. The most distant population (z > 4) is poorly explored, but the deep limits reached point towards very small and star-forming objects, similar to the low-z population. This `back to the future behavior is a natural consequence of the connection of long GRBs to star formation in young regions of the universe.
The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we developed a program that is capable of simulating all the rate trigger criteria and mimicking the image trigger threshold. We use this program to search for the intrinsic GRB rate. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, we find that either the GRB rate is much higher than previously expected at large redshift, or the luminosity evolution is non-negligible. We will discuss the best results of the GRB rate in our search, and their impact on the star-formation history.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا